How to Embed Short Cycles into Large Nonlinear Feedback-Shift Registers

  • Le Van Ly
  • Werner Schindler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3352)


We construct nonlinear feedback shift registers with short cycles. Our method is to embed nonlinear feedback shift registers with small state spaces into nonlinear feedback shift registers with large state spaces. Algebraic analysis of our embedding indicates that detecting the embedded ‘small’ feedback shift register in the large feedback register is infeasible without additional information. As an application we propose a low-cost group-identification scheme.


Nonlinear feedback shift register short cycles systems of algebraic equations invariant theory low-cost group identification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davies, D.W., Price, W.L.: Security for Computer Networks. Wiley & Sons, Chichester (1998)Google Scholar
  2. 2.
    Golomb, S.W.: Shift Register Sequences. revised edn. Angean Park Press, Laguna Hills, Cal. (1982)Google Scholar
  3. 3.
    Koblitz, N.: Algebraic Aspects of Cryptography. Springer, Berlin (1998)MATHGoogle Scholar
  4. 4.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)MATHGoogle Scholar
  5. 5.
    Lazard, D.: Gröbner bases, Gaussian elimination, and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed.) ISSAC 1983 and EUROCAL 1983. LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983)Google Scholar
  6. 6.
    Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, Berlin (1986)MATHGoogle Scholar
  7. 7.
    Sarma, S.E., Weis, S.A., Engels, D.W.: RFID systems and security and privacy implications. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 454–470. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Le Van Ly
    • 1
  • Werner Schindler
    • 1
  1. 1.Bundesamt für Sicherheit in der Informationstechnik (BSI)BonnGermany

Personalised recommendations