On the Size of Monotone Span Programs

  • Ventzislav Nikov
  • Svetla Nikova
  • Bart Preneel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3352)


Span programs provide a linear algebraic model of computation. Monotone span programs (MSP) correspond to linear secret sharing schemes. This paper studies the properties of monotone span programs related to their size. Using the results of van Dijk (connecting codes and MSPs) and a construction for a dual monotone span program proposed by Cramer and Fehr we prove a non-trivial upper bound for the size of monotone span programs. By combining the concept of critical families with the dual monotone span program construction of Cramer and Fehr we improve the known lower bound with a constant factor, showing that the lower bound for the size of monotone span programs should be approximately twice as large. Finally, we extend the result of van Dijk showing that for any MSP there exists a dual MSP such that the corresponding codes are dual.


Linear Span Access Structure Secret Sharing Scheme Recombination Vector Parity Check Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allender, E., Beals, R., Ogihara, M.: The Complexity of Matrix Rank and Feasible Systems of Linear Equations. In: ACM STOC 1996, pp. 161–167 (1996)Google Scholar
  2. 2.
    Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution, Ph.D. Thesis, Technion (1996)Google Scholar
  3. 3.
    Beimel, A., Gal, A., Paterson, M.: Lower Bounds for Monotone Span Programs. Computational Complexity 6, 29–45 (1996/1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Beimel, A., Weinreb, E.: Separating the Power of Monotone Span Programs over Different Fields. In: FOCS 2003, pp. 428–437 (2003)Google Scholar
  5. 5.
    Babai, L., Gal, A., Wigderson, A.: Superpolynomial Lower Bounds for Monotone Span Programs. Combinatorica 19(3), 301–319 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Brickell, E.: Some Ideal Secret Sharing Schemes. J. of Comb. Math. and Comb. Computing 9, 105–113 (1989)MathSciNetGoogle Scholar
  7. 7.
    Buntrock, G., Damm, C., Hertrampf, H., Meinel, C.: Structure and Importance of the Logspace-mod Class. Math. Systems Theory 25, 223–237 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Cramer, R., Damgard, I., Maurer, U.: General Secure Multi-Party Computation from any Linear Secret Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Cramer, R., Fehr, S.: Optimal Black-Box Secret Sharing over Arbitrary Abelian Groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 272–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    van Dijk, M.: Secret Key Sharing and Secret Key Generation, Ph.D. Thesis, TU Eindhoven (1997)Google Scholar
  11. 11.
    Gal, A.: Combinatorial Methods in Boolean Functions Complexity, Ph.D. Thesis, Chicago, Illinois (1995)Google Scholar
  12. 12.
    Gal, A.: A Characterization of Span Program Size and Improved Lower Bounds for Monotone Span Programs. Computational Complexity 10(4), 277–296 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Gal, A., Pudlak, P.: Monotone Complexity and the Rank of Matrices. Inform. Proc. Lett. 87, 321–326 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Karchmer, M., Wigderson, A.: On Span Programs. In: Proc. of 8-th Annual Structure in Complexity Theory Conference, pp. 102–111. IEEE Computer Society Press, Los Alamitos (1993)CrossRefGoogle Scholar
  15. 15.
    Nikov, V., Nikova, S., Preneel, B., Vandewalle, J.: Applying General Access Structure to Metering Schemes, WCC 2003, Cryptology ePrint Archive: Report 2002/102 (2003)Google Scholar
  16. 16.
    Nikov, V., Nikova, S., Preneel, B.: Upper Bound for the Size of Monotone Span Programs. In: ISIT 2003, p. 284 (2003)Google Scholar
  17. 17.
    Pudlak, P., Sgall, J.: Algebraic Models of Computations and Interpolation for Algebraic Proof Systems. In: Proof Complexity and Feasible Arithmetic. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 39, pp. 279–295 (1998)Google Scholar
  18. 18.
    Shamir, A.: How to Share a Secret. Commun. ACM 22, 612–613 (1979)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ventzislav Nikov
    • 1
  • Svetla Nikova
    • 2
  • Bart Preneel
    • 2
  1. 1.Department of Mathematics and Computing ScienceEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Department Electrical Engineering, ESAT/COSICKatholieke Universiteit LeuvenHeverlee-LeuvenBelgium

Personalised recommendations