Colored Visual Cryptography Without Color Darkening

  • S. Cimato
  • R. De Prisco
  • A. De Santis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3352)


Visual cryptography schemes allow the encoding of a secret image into shares, in the form of transparencies, which are distributed to the participants. The shares are such that only qualified subsets of participants can visually recover the secret image by superimposing the transparencies.

In this paper we study colored visual cryptography schemes. Most of previous work on colored visual cryptography allows the superposition of pixels having the same color assuming that the resulting pixel still has the same color. This is not what happens in reality since when superimposing two pixels of the same color one gets a darker version of that color, which effectively is a different color. Superimposing many pixels of the same color might result in a so dark version of the color that the resulting pixel might be not distinguishable from a black pixel.

Thus we propose a model where the reconstruction has to guarantee that the reconstructed secret pixel has the same color of the original one and not a darker version of it. We give a construction of c-color (k,n)-threshold visual cryptography schemes. Since we have to guarantee the reconstruction of the exact original color, in many cases our schemes have a bigger pixel expansion than previous ones. However, for the case of k = n, we get a smaller pixel expansion when compared with schemes that to do not guarantee the exact reconstruction of the original color. We also prove that, in the model introduced in this paper, our schemes for k = n have optimal pixel expansion.


Dark Version Secret Image Security Property Base Matrix Base Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adhikari, A., Sikdar, S.: A new (2,n)-Visual Threshold Scheme for Color Images. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 148–161. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Visual Cryptography for General Access Structures. Informatiosn and Computation 129(2), 86–106 (1996)zbMATHCrossRefGoogle Scholar
  3. 3.
    Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Extended Schemes for Visual Cryptography. Theoretical Computer Science 250, 143–161 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: Contrast Optimal Threshold Visual Cryptography Schemes. SIAM J. on Discrete Math. 16, 224–261 (2003)zbMATHCrossRefGoogle Scholar
  5. 5.
    Blundo, C., De Bonis, A., De Santis, A.: Improved Schemes for Visual Cryptography. Designs, Codes, and Cryptography 24, 255–278 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Blundo, C., De Santis, A., Stinson, D.R.: On the Contrast in Visual Cryptography Schemes. Journal of Cryptology 12(4), 261–289 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cimato, S., De Prisco, R., De Santis, A.: Optimal Colored Threshold Visual Cryptography Schemes. Designs, Codes, and Cryptography (to appear)Google Scholar
  8. 8.
    Eisen, P.A., Stinson, D.R.: Threshold Visual Cryptography Schemes With Specified Whiteness Levels of Reconstructed Pixels. Designs, Codes and Cryptography 25, 15–61 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hofmeister, T., Krause, M., Simon, H.U.: Contrast-Optimal k out of n Secret Sharing Schemes in Visual Cryptography. Theoretical Computer Science 240, 471–485 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hou, Y.-C.: Visual cryptography for color images. Pattern Recognition 36, 1619–1629 (2003)CrossRefGoogle Scholar
  11. 11.
    Koga, H., Yamamoto, H.: Proposal of a Lattice-Based Visual Secret Sharing Scheme for Color and Gray-Scale Images. IEICE Trans. on Fundamentals of Electronics, Communication and Computer Sciences 81-A(6), 1262–1269 (1998)Google Scholar
  12. 12.
    Naor, M., Shamir, A.: Visual Cryptography. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  13. 13.
    Verheul, E.R., van Tilborg, H.C.A.: Constructions and Properties of k out of n Visual Secret Sharing Schemes. Designs, Codes, and Cryptography 11(2), 179–196 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Yang, C.-N., Laih, C.-S.: New Colored Visual Secret Sharing Schemes. Designs, Codes, and Cryptography 20, 325–335 (2000)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • S. Cimato
    • 1
  • R. De Prisco
    • 1
  • A. De Santis
    • 1
  1. 1.Dipartimento di Informatica ed ApplicazioniUniversità di SalernoBaronissi (SA)Italy

Personalised recommendations