Advertisement

Inconsistency Issues in Spatial Databases

  • Andrea Rodríguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3300)

Abstract

This chapter analyzes inconsistency issues in spatial databases. In particular, it reviews types of inconsistency, specification of integrity constraints, and treatment of inconsistency in multiple representations and data integration. The chapter focuses on inconsistency associated with the geometric representation of objects, spatial relations between objects, and composite objects by aggregation. The main contribution of this paper is a survey of existing approaches to dealing with inconsistency issues in spatial databases that emphasizes the current state of the art and that outlines research issues in the context of inconsistency tolerance.

Keywords

Geographic Information System Spatial Relation Spatial Database Integrity Constraint Spatial Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdelmoty, A., Jones, C.: Towards maintening consistency in spatial databases. In: Proceedings of the Sixth International Conference on Information and Knowledge Management, Las Vergas, USA, pp. 293–300. ACM Press, New York (1997)Google Scholar
  2. 2.
    Altman, D.: Fuzzy set theory approaches for hadling imprecision in spatial analysis. International Journal of Geographic Information Science 8(3), 271–289 (1994)Google Scholar
  3. 3.
    Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent databases. In: ACM Symposium on Principles of Database Systems (PODS), pp. 68–79 (1999)Google Scholar
  4. 4.
    Arenas, M., Bertossi, L., Chomicki, J.: Specifying and querying database repairs using logic programs with exceptions. In: International Conference on Flexible Query Answering Systems (FQAS), pp. 27–41. Springer, Heidelberg (2000)Google Scholar
  5. 5.
    Arenas, M., Bertossi, L., Chomicki, J.: Answer sets for consistent query answering in inconsistent databases. Theory and Practice of Logic Programming 3(4 & 5), 393–424 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bertossi, L., Chomicki, J.: Query answering in inconsistent databases. In: Chimicki, J., Saake, G., van der Meyden, R. (eds.) Logics for Emerging Applications of Databases. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Bonnissone, P., Tong, R.: Reasoning with uncertainty in expert systems. International Journal of Man and Machine Studies 22, 241–250 (1985)CrossRefGoogle Scholar
  8. 8.
    Borges, K., Davis, C., Laender, A.: Integrity constraints in spatial databases. In: Database Integrity: Challenges and Solutions. Ideas Group, USA (2002)Google Scholar
  9. 9.
    Borges, K., Laender, A., Davis, C.: Spatial integrity constraints in object oriented geographic data modeling. In: Bauzer-Medeiros, C. (ed.) ACM International Symposium on Advances in GIS, pp. 1–6. ACM Press, New York (1999)Google Scholar
  10. 10.
    Bosc, P., Prade, H.: An introduction to fuzzy set and possibility theory based approaches to the treatment of uncertainty and imprecision in datatabase management systems. In: Motro, A., Smets, P. (eds.) Uncertainty Management in Information Systems: From Needs to Solutions, pp. 285–324. Kluwer Academic Publishers, Dordrecht (1997)CrossRefGoogle Scholar
  11. 11.
    Bruns, T., Egenhoger, M.: Similarity of spatial scenes. In: International Symposium on Spatial Data Handling SDH 1996, Delf, The Netherlands, pp. 31–42. Taylor and Francis, Abington (1996)Google Scholar
  12. 12.
    Burrough, P.: Natural objects with undeterminate boundaries. In: Frank, A. (ed.) Geographic Objects with Indeterminate Boundaries GISDATA, pp. 3–28. Taylor & Francis, Abington (1996)Google Scholar
  13. 13.
    Chandra, A., Harel, D.: Computable queries for relational database systems. Journal of Computer and System Sciences 21(2), 156–178 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chomicki, J.: Consistent query answering: Recent developments and future directions. In: Jajodia, S., Strous, L. (eds.) Working Conference on Integrity and Internal Control in Information Systems, Lousanne, Switzerland. Kluwer Publishers, Dordrecht (2003)Google Scholar
  15. 15.
    Clementini, E., Di Felice, P.: An algebraic model for spatial objects with undeterminate boundaries. In: Frank, A. (ed.) Geographic Objects with Indeterminate Boundaries, London, pp. 155–169. Taylor & Francis, Abington (1996)Google Scholar
  16. 16.
    Clementini, E., Di Felice, P.: Approximate topological relations. International Journal of Approximate Reasoning 16, 73–204 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Clementini, E., Sharma, J., Egenhofer, M.: Modeling topological relations: Strategies for query preprocessing. Computers and Graphics 18(6), 815–822 (1994)CrossRefGoogle Scholar
  18. 18.
    Cockcroft, S.: A taxonomy of spatial integrity constraints. GeoInformatica 1(4), 327–343 (1997)CrossRefGoogle Scholar
  19. 19.
    Cockcroft, S.: Modelling spatial data integrity constraints at the metadata level. In: Pullar, D. (ed.) GeoComputation, Brisbane, Australia (2001)Google Scholar
  20. 20.
    Cohn, A., Bennett, B., Gooday, J., Gotts, N.: Representing and reasoning with qualitative spatial relations about regions. In: Stock, O. (ed.) Spatial and Temporal Reasoning, pp. 97–134. Kluwer Academic Publishers, Dordrecht (1997)CrossRefGoogle Scholar
  21. 21.
    Cohn, G., Gotts, N.: The ’egg-yolk’ representation of regions with indeterminate boundaries. In: Frank, A. (ed.) Geographic Objects with Indeterminate Boundaries, London, pp. 171–187. Taylor & Francis, Abington (1996)Google Scholar
  22. 22.
    Couclelis, H.: People manipulate objects (but cultivate fields): Beyond the rastervecter debate in gis. In: Frank, A.U., Formentini, U., Campari, I. (eds.) GIS 1992. LNCS, vol. 639, pp. 65–77. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  23. 23.
    Egenhofer, M.: Consistency revisited. GeoInformatica 1(4), 323–325 (1997)CrossRefGoogle Scholar
  24. 24.
    Egenhofer, M., Clementini, E., Di Felice, P.: Evaluating inconsistency among multiple representations. In: Spatial Data Handling, Edinburg, Scotland, pp. 901–920 (1994)Google Scholar
  25. 25.
    Egenhofer, M., Franzosa, R.: Point-set topological spatial relations. International Journal of Geographical Information Systems 5(2), 161–174 (1991)CrossRefGoogle Scholar
  26. 26.
    Egenhofer, M., Franzosa, R.: On the equivalence of topological relations. International Journal of Geographical Information Systems 8(6), 133–152 (1994)Google Scholar
  27. 27.
    Egenhofer, M., Herring, J.: Categorizing topological spatial relations between point, line, and area objects. Technical Report Report 94-1, National Center for Geographic Information Analysis (1994)Google Scholar
  28. 28.
    Egenhofer, M., Mark, D.: Naive geography. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 1–14. Springer, Heidelberg (1995)Google Scholar
  29. 29.
    Egenhofer, M., Sharma, J.: Topological consistency. In: Bresnahan, P., Corwin, E., Cowen, D. (eds.) Proceedings of the 5th International Symposium on Spatial Data Handling, Charleston, USA, pp. 335–343 (1992) IGU Commission of GISGoogle Scholar
  30. 30.
    Egenhofer, M., Sharma, J.: Assessing the consistency of complete and incomplete topological information. Geographical Systems 1(1), 47–68 (1993)Google Scholar
  31. 31.
    Elsmari, R., Navathe, S.: Fundamentals of Database Systems., 3rd edn. Addison Wesley, Reading (2000)Google Scholar
  32. 32.
    Erwing, M., Schneider, M.: Vague regions. In: Scholl, M.O., Voisard, A. (eds.) SSD 1997. LNCS, vol. 1262, pp. 298–320. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  33. 33.
    Finn, J.: Use of the average mutual information index in evaluating error and consistency. International Journal of Geographic Information Science 7(4), 349–366 (1993)Google Scholar
  34. 34.
    Frank, A.: Tiers of ontology and consistency constraints in geographical information systems. International Journal of Geographic Information Science 15(7), 667–678 (2001)CrossRefGoogle Scholar
  35. 35.
    Gardarin, G., Cheiney, J.P., Kiernan, G., Pastre, D., Stora, H.: Managening complex objects in an extensible relational DBMS. In: Proceedings of Very Large Data Bases (1989)Google Scholar
  36. 36.
    Gody, F., Rodríguez, A.: A quantitative description of spatial configurations. In: Richardson, D., van Oosterom, P. (eds.) Proceedings of the 10th Symposium on Spatial Data Handling, pp. 299–311. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  37. 37.
    Güting, R.: An introduction to spatial database systems. VLDB Journal 3, 357–399 (1994)CrossRefGoogle Scholar
  38. 38.
    Güting, R., Schneider, M.: Realms: A Foundation for Spatial Data Types in Database Systems. In: Abel, D.J., Ooi, B.-C. (eds.) SSD 1993. LNCS, vol. 692, pp. 14–35. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  39. 39.
    Güting, R., Schneider, M.: Realm-based spatial data types: The rose algebra. Technical Report 141-3-93, Fern Universität, Hagen (1993)Google Scholar
  40. 40.
    Guüting, R., Böhlen, M., Erwing, M., Jensen, C., Lorentzos, N., Schneider, M., Vazirgiannis, M.: Foundation for representing and querying moving objects. ACM Transactions on Database Systems 25(1), 1–42 (2000)CrossRefGoogle Scholar
  41. 41.
    Hadzilacos, T., Tryfona, N.: A model for expressing topological constraints in geographic databases. In: Frank, A., Campari, I., Formentini, U. (eds.) Theories and Methods of Spatio-Temporal Reasoning in Geographic Space COSIT 1992, Pisa, Italy, pp. 252–268. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  42. 42.
    Kanellakis, P., Kuper, G., Revesz, P.: Constraint query languages. Journal of Computer and System Sciences 51(1), 26–52 (1995)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Kuipers, B., Paredaens, J., den Busshe, J.: On topological equivalence of spatial databases. In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 432–446. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  44. 44.
    Kuper, G., Libkin, L., Paredaens, J.: Constraint Databases. Springer, Heidelberg (2000)CrossRefzbMATHGoogle Scholar
  45. 45.
    Laurini, R., Thompson, D.: Fundamentals ofr Spatial Information Systems. Academic Press, London (1992)zbMATHGoogle Scholar
  46. 46.
    Papadias, D., Theodoridis, Y.: Spatial relations, minimum bounding rectangles and spatial data structures. International Journal of Geographical Information Science 11(2), 111–138 (1997)CrossRefGoogle Scholar
  47. 47.
    Paredaens, J., Van den Bussche, J., Van Gucht, D.: Towards a theory of spatial databases queries. In: Proceedings of the 13th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 128–288. ACM Press, New York (1994)Google Scholar
  48. 48.
    Paredaens, J., Kuipers, B.: Data models and query languages for spatial databases. Data Knowledge Engineering 25(1-2), 29–53 (1998)CrossRefzbMATHGoogle Scholar
  49. 49.
    Parson, S.: Current approaches to handling imperfect information in data and knowledge bases. IEEE Transactions on Knowledge and Data Engineering 8(3), 353–371 (1996)CrossRefGoogle Scholar
  50. 50.
    Pfoser, D., Jensen, C.: Capturing the uncertainty of moving-object representations. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 111–132. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  51. 51.
    Pfoser, D., Tryfona, N.: Capturing fuzziness and uncertainty of spatiotemporal objects. In: Caplinskas, A., Eder, J. (eds.) ADBIS 2001. LNCS, vol. 2151, pp. 112–126. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  52. 52.
    Pizzaro, A., Klinger, A., Cardenas, A.: Specification of spatial integrity constraints in pictorical databases. Computer 22(12), 59–71 (1989)CrossRefGoogle Scholar
  53. 53.
    Plümer, L., Gröger, G.: Achieving integrity constraints in geographic information systems. GeoInformatica 1(4), 345–367 (1997)CrossRefGoogle Scholar
  54. 54.
    Ragaux, P., Scholl, M., Voisard, A.: Spatial Databases: with Application in GIS. Academic Press, London (2002)Google Scholar
  55. 55.
    Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading (1990)Google Scholar
  56. 56.
    Schneider, M.: Metric operations on fuzzy spatial objects in databases. In: Proceedings of the 8th ACm Symposium on Geographic Information Systems, Washington DC, pp. 21–26. ACM Press, New York (2000)Google Scholar
  57. 57.
    Servige, S., Ubeda, T., Puricelli, A., Laurini, R.: A methodology for spatial consistency improvement of geographic databases. GeoInformatica 4, 7–24 (2000)CrossRefzbMATHGoogle Scholar
  58. 58.
    Shekhar, S., Chawla, S.: Spatial Databases: A Tour. Prentice Hall, Englewood Cliffs (2003)Google Scholar
  59. 59.
    Shekhar, S., Coyle, M., Goyal, B., Liu, D.-R., Sarkar, S.: Data models in geographic information systems. Comm. ACM 40(4), 103–111 (1997)CrossRefGoogle Scholar
  60. 60.
    Stell, J., Worboys, M.: Stratified map spaces. In: Poiker, T., Chrisman, N. (eds.) Spatial Data Handling, British Columbia, Canada, pp. 180–189. Taylor & Francis, Abington (1998)Google Scholar
  61. 61.
    Stock, O.: Spatial and Temporal Reasoning. Kluwer Acaddemic Publishers, Dordrecht (1997)CrossRefGoogle Scholar
  62. 62.
    Stonebraker, M., Rowe, L.A.: The design of POSTGRES. In: Proceedings of ACM SIGARCT-SIGMOD, pp. 340–355 (1986)Google Scholar
  63. 63.
    Tryfona, N., Egenhofer, M.: Consistency among parts and aggregates: A computational model. Transactions on GIS 1(3), 189–206 (1997)CrossRefGoogle Scholar
  64. 64.
    Usery, E.: A conceptual framwork and fuzzy set implementation for geographic features. In: Frank, A. (ed.) Geographic Objects with Undeterminate Boundaries GISDATA, pp. 71–85. Taylor & Francis, Abington (1996)Google Scholar
  65. 65.
    Voisard, A., David, B.: A database pespective on geospatial data modeling. IEEE Transactions on Knowledge and Data Engineering 14(2), 226–246 (2002)CrossRefGoogle Scholar
  66. 66.
    Worboys, M.: A geometric model for planar geographical objects. International Journal of Geographical Information Systems 6(5), 353–372 (1992)CrossRefGoogle Scholar
  67. 67.
    Worboys, M.: Computation with imprecise geographic data. Journal of Computers, Environment and Urvan Systems 22, 85–106 (1998)CrossRefGoogle Scholar
  68. 68.
    Worboys, M.: Imprecision in finite resolution spatial data. GeoInformatica 2, 257–280 (1998)CrossRefGoogle Scholar
  69. 69.
    Worboys, M., Clementini, E.: Integration of imperfect spatial information. Journal of Visual Languages and Computing 12, 61–80 (2001)CrossRefGoogle Scholar
  70. 70.
    Zadeh, L.: Fuzzy sets. Information and Control 8, 338–358 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Zhan, F.: Approximate analysis of binary topological relations between geographic regions with indeterminate boundaries. Soft Computing 2, 28–34 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Andrea Rodríguez
    • 1
  1. 1.Department of Computer ScienceUniversity of ConcepciónChile

Personalised recommendations