On the Optimization of Side-Channel Attacks by Advanced Stochastic Methods

  • Werner Schindler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3386)


A number of papers on side-channel attacks have been published where the side-channel information was not exploited in an optimal manner, which reduced their efficiency. A good understanding of the source and the true risk potential of an attack is necessary to rate the effectiveness of possible countermeasures. This paper explains a general approach to optimize the efficiency of side-channel attacks by advanced stochastic methods. The approach and its benefits are illustrated by examples.


Side-channel attack Montgomery’s multiplication algo-rithm stochastic process statistical decision problem optimal decision strategy 


  1. 1.
    Brumley, D., Boneh, D.: Remote Timing Attacks are Practical. In: Proceedings of the 12th Usenix Security Symposium (2003)Google Scholar
  2. 2.
    Canvel, B., Hiltgen, A.P., Vaudenay, S., Vuagnoux, M.: Password interception in a SSL/TLS channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 583–599. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Coppersmith, D.: Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities. J. Cryptology 10(4), 233–260 (1997)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dhem, J.-F., Koeune, F., Leroux, P.-A., Mestré, P.-A., Quisquater, J.-J., Willems, J.-L.: A Practical Implementation of the Timing Attack. In: Quisquater, J.-J., Schneier, B. (eds.) CARDIS 1998. LNCS, vol. 1820. Springer, Heidelberg (2000)Google Scholar
  5. 5.
    Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  6. 6.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Koeune, F., Quisquater, J.-J.: A Timing Attack against Rijndael. Catholic University of Louvain, Crypto Group, Technical report CG-1999/1 (1999)Google Scholar
  8. 8.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.C.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)MATHGoogle Scholar
  10. 10.
    Neuenschwander, D.: Probabilistic and Statistical Methods in Cryptology. LNCS, vol. 3028. Springer, Heidelberg (2004)MATHCrossRefGoogle Scholar
  11. 11.
    Sato, H., Schepers, D., Takagi, T.: Exact Analysis of Montgomery Multiplication. TU Darmstadt, Technical Report TI-6/04Google Scholar
  12. 12.
    Schindler, W.: Optimized Timing Attacks against Public Key Cryptosystems. Statist. Decisions 20, 191–210 (2002)MATHMathSciNetGoogle Scholar
  13. 13.
    Schindler, W.: A timing attack against RSA with the chinese remainder theorem. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 110–125. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Schindler, W., Koeune, F., Quisquater, J.-J.: Unleashing the Full Power of Timing Attack. Catholic University of Louvain, Technical Report CG-2001/3Google Scholar
  15. 15.
    Schindler, W., Koeune, F., Quisquater, J.-J.: Improving divide and conquer attacks against cryptosystems by better error detection / correction strategies. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 245–267. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Schindler, W.: A combined timing and power attack. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 263–279. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Schindler, W., Walter, C.D.: More detail for a combined timing and power attack against implementations of RSA. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 245–263. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Walter, C.D.: Precise bounds for montgomery modular multiplication and some potentially insecure RSA moduli. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 30–39. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Walter, C.D., Thompson, S.: Distinguishing exponent digits by observing modular subtractions. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 192–207. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Witting, H.: Mathematische Statistik I, Stuttgart (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Werner Schindler
    • 1
  1. 1.Bundesamt für Sicherheit in der Informationstechnik (BSI)BonnGermany

Personalised recommendations