Advertisement

Efficient Multi-receiver Identity-Based Encryption and Its Application to Broadcast Encryption

  • Joonsang Baek
  • Reihaneh Safavi-Naini
  • Willy Susilo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3386)

Abstract

In this paper, we construct an efficient “multi-receiver identity-based encryption scheme”. Our scheme only needs one (or none if precomputed and provided as a public parameter) pairing computation to encrypt a single message for n receivers, in contrast to the simple construction that re-encrypts a message n times using Boneh and Franklin’s identity-based encryption scheme, considered previously in the literature. We extend our scheme to give adaptive chosen ciphertext security. We support both schemes with security proofs under precisely defined formal security model. Finally, we discuss how our scheme can lead to a highly efficient public key broadcast encryption scheme based on the “subset-cover” framework.

Keywords

Multi-Receiver Identity-Based Encryption Formal Security Analysis Public Key Broadcast Encryption 

References

  1. 1.
    Baudron, O., Pointcheval, D., Stern, J.: Extended Notions of Security for Multicast Public Key Cryptosystems. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 499–511. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Boldyreva, A., Micali, S.: Public-key Encryption in a Multi-User Setting: Security Proofs and Improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Boldyreva, A., Pointcheval, D.: Multi-Recepient Encryption Schemes: Security Notions and Randomness Re-Use. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 85–99. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity Based Encryption Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations Among Notions of Security for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)Google Scholar
  6. 6.
    Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In: ACM CCCS 1993, pp. 62–73 (1993)Google Scholar
  7. 7.
    Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Chen, L., Harrison, K., Soldera, D., Smart, N.P.: Applications of Multiple Trust Authorities in Pairing Based Cryptosysems. In: Davida, G.I., Frankel, Y., Rees, O. (eds.) InfraSec 2002. LNCS, vol. 2437, pp. 260–275. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Cocks, C.: An Identity Based Encryption Scheme Based on Quadratic Residues. In: Honary, B. (ed.) IMA 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Dodis, Y., Fazio, N.: Public Key Broadcast Encryption for Stateless Receivers. In: ACM-DRM (2002)Google Scholar
  12. 12.
    Dodis, Y., Fazio, N.: Public Key Trace and Revoke Scheme Secure against Adaptive Chosen Ciphertext Attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 100–115. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)Google Scholar
  15. 15.
    Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Kurosawa, K.: Multi-Recepient Public-Key Encryption with Shortened Ciphertext. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 48–63. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Menezes, A.J., Okamoto, T., Vanstone, S.A.: Reducing Elliptic Curve Logarithms to a Finite Field. IEEE Tran. on Info. Theory 31, 1639–1646 (1993)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Naor, D., Naor, M., Lotspiech, J.: Revocation and Tracing Schemes for Stateless Receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for the Security of Cryptographic Schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Okamoto, T., Pointcheval, D.: REACT: Rapid Enhanced-security Asymmetric Cryptosystem Transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 159–174. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Smart, N.P.: Access Control Using Pairing Based Cryptography. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 111–121. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Joonsang Baek
    • 1
  • Reihaneh Safavi-Naini
    • 1
  • Willy Susilo
    • 1
  1. 1.Centre for Information Security Research, School of Information Technology and Computer ScienceUniversity of WollongongWollongongAustralia

Personalised recommendations