Fast Multi-computations with Integer Similarity Strategy

  • Wu-Chuan Yang
  • Dah-Jyh Guan
  • Chi-Sung Laih
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3386)


Multi-computations in finite groups, such as multiexponentiations and multi-scalar multiplications, are very important in ElGamal-like public key cryptosystems. Algorithms to improve multi-computations can be classified into two main categories: precomputing methods and recoding methods. The first one uses a table to store the precomputed values, and the second one finds a better binary signed-digit (BSD) representation. In this article, we propose a new integer similarity strategy for multi-computations. The proposed strategy can aid with precomputing methods or recoding methods to further improve the performance of multi-computations. Based on the integer similarity strategy, we propose two efficient algorithms to improve the performance for BSD sparse forms. The performance factor can be improved from 1.556 to 1.444 and to 1.407, respectively.


ElGamal-like public key cryptosystems binary signed-digit (BSD) representations sparse forms multi-computations multiexponentiations multi-scalar multiplications 


  1. 1.
    Arno, S., Wheeler, F.S.: Signed digit representations of minimal hamming weight. IEEE Trans. Computers 42(8), 1007–1010 (1993)CrossRefGoogle Scholar
  2. 2.
    Avanzi, R.M.: On multi-exponentiation in cryptography. IACR Cryptology ePrint Archive 2002/154 (2002),
  3. 3.
    Bernstein, D.J.: Pippenger’s exponentiation algorithm (2002),
  4. 4.
    Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast exponentiation with precomputation. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 200–207. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  5. 5.
    C¸, K., Ko¸c.: High-speed RSA implementations. RSA Laboratories, Technique Notes TR201, pp. 9–32 (November 1994),
  6. 6.
    Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 51–65. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Dimitrov, V.S., Jullien, G.A., Miller, W.C.: Complexity and fast algorithms for multiexponentiation. IEEE Trans. Computers 49(2), 141–147 (2000)CrossRefMathSciNetGoogle Scholar
  8. 8.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Information Theory 31(4), 469–472 (1985)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    FIPS186-2. Digital signature standard(DSS). NIST Computer Security FIPS page (2001),
  10. 10.
    Gordon, D.M.: A survey of fast exponentiation methods. Journal of Algorithms 27, 129–146 (1998)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Jedwab, J., Mitchell, C.J.: Minimum weight modified signed-digit representations and fast exponentiation. Electronics Letters 25(17), 1171–1172 (1989)MATHCrossRefGoogle Scholar
  12. 12.
    Joye, M., Yen, S.M.: Optimal left-to-right binary signed-digit recoding. IEEE Trans. Computers 49(7), 740–748 (2000)CrossRefGoogle Scholar
  13. 13.
    Knuth, D.E.: The Art of Computer Programming, Seminumerical Algorithms, 3rd edn., vol. 2. Addison-Wesley, Reading (1998)Google Scholar
  14. 14.
    Lim, C.H., Lee, P.J.: More flexible exponentiation with precomputation. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Heidelberg (1994)Google Scholar
  15. 15.
    Möller, B.: Algorithms for multi-exponentiation. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 165–180. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Mishra, P.K.: Scalar multiplication in elliptic curve cryptosystems: Pipelining with pre-computations. IACR Cryptology ePrint Archive 2004/191 (2004),
  17. 17.
    Muir, J., Stinson, D.: Minimality and other properties of the width-w nonadjacent form. Technique Report CORR 2004-08 (2004),
  18. 18.
    Okeya, K., Sakurai, K.: Fast multi-scalar multiplication methods on elliptic curves with precomputation strategy using montgomery trick. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 564–578. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Okeya, K., Schmidt-Samoa, K., Spahn, C., Takagi, T.: Signed binary representations revisited. IACR Cryptology ePrint Archive 2004/195 (2004),
  20. 20.
    Reitwiesner, G.W.: Binary arithmetic. In: Advance in computers, pp. 231–308 (1960)Google Scholar
  21. 21.
    Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)Google Scholar
  22. 22.
    Solinas, J.A.: Low-weight binary representations for pairs of integers. Technique Report CORR 2001-41 (2001),
  23. 23.
    Yen, S.M., Laih, C.S., Lenstra, A.K.: Multiexponentiation. IEE Proc. Computers and Digital Techniques 141(6), 325–326 (1994)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Wu-Chuan Yang
    • 1
  • Dah-Jyh Guan
    • 2
  • Chi-Sung Laih
    • 1
  1. 1.Department of Electrical EngineeringNational Cheng Kung UniversityTainanR.O.C. Taiwan
  2. 2.Department of Computer ScienceNational Sun Yat Sen UniversityKaohsiungR.O.C. Taiwan

Personalised recommendations