Minimizing Counterexample with Unit Core Extraction and Incremental SAT

  • ShengYu Shen
  • Ying Qin
  • SiKun Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3385)


It is a hotly researching topic to eliminate irrelevant variables from counterexample, to make it easier to be understood. K Ravi proposes a two-stages counterexample minimization algorithm. This algorithm is the most effective one among all existing approaches, but time overhead of its second stage(called BFL) is very large due to one call to SAT solver per candidate variable to be eliminated. So we propose a faster counterexample minimization algorithm based on unit core extraction and incremental SAT. First, for every unsatisfiable instance of BFL, we perform unit core extraction algorithm to extract the set of variables that are sufficient to lead to conflict, all variables not belong to this set can be eliminated simultaneously. In this way, we can eliminate many variables with only one call to SAT solver. At the same time, we employ incremental SAT approach to share learned clauses between similar instances of BFL, to prevent overlapped state space from being searched repeatedly. Theoretic analysis and experiment result show that, our approach is 1 order of magnitude faster than K Ravi’s algorithm, and still retains its ability to eliminate irrelevant variables.


Model Check Free Variable Kripke Structure Time Overhead Unit Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clarke, E., Gupta, A., Kukula, J., Strichman, O.: SAT based abstractionrefinement using ILP and machine learning. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 265–279. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Chauhan, P., Clarke, E.M., Kroening, D.: Using SAT based Image Computation for Reachability Analysis. technology report CMU-CS-03-151, School of Computer Science, Carnegie Mellon University (September 2003)Google Scholar
  3. 3.
    McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Kang, H.-J., Park, I.-C.: SAT-Based Unbounded Symbolic Model Checking. In: Proceeding of DAC 2003, Anaheim, California, USA, June 2-6 (2003)Google Scholar
  5. 5.
    Ravi, K., Somenzi, F.: Minimal Assignments for Bounded Model Checking. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 31–45. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Jin, H., Ravi, K., Somenzi, F.: Fate and free will in error traces. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 445–458. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic Model Checking using SAT procedures instead of BDDs. In: Proceedings of the 36th Conference on Design Automation (DAC 1999), pp. 317–320 (1999)Google Scholar
  8. 8.
    Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in a Boolean satisfiability solver. In: ICCAD (2001)Google Scholar
  9. 9.
    Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Moskewicz, M., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proceedings of the Design Automation Conference, Las Vegas, NV, pp. 530–535 (June 2001)Google Scholar
  11. 11.
  12. 12.
    Een, N., Sorensson, N.: Temporal Induction by Incremental SAT Solving. In: Proc. of the First International Workshop on Bounded Model Checking (2003)Google Scholar
  13. 13.
    Gastin, P., Moro, P., Zeitoun, M.: Minimization of counterexamples in spin. In: SPIN Workshop on Model Checking of Software, pp. 92–108 (2004)Google Scholar
  14. 14.
    Groce, A., Kroening, D.: Making the Most of BMC Counterexamples. In: The second international workshop on Bounded Model Checking, BMC 2004 (2004) (to appear)Google Scholar
  15. 15.
    Glusman, M., Kamhi, G., Mador-Haim, S., Fraer, R., Vardi, M.Y.: Multiple-Counterexample Guided Iterative Abstraction Refinement: An Industrial Evaluation. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 176–191. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Zhang, L., Malik, S.: Validating sat solvers using an independent resolutionbased checker: Practical implementations and other applications. In: Proceedings of Design Automation and Test in Europe, DATE 2003 (2003)Google Scholar
  17. 17.
    Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for cnf formulas. In: Proceedings of Design Automation and Test in Europe, DATE 2003 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • ShengYu Shen
    • 1
  • Ying Qin
    • 1
  • SiKun Li
    • 1
  1. 1.Office 607,School of Computer ScienceNational University of Defense TechnologyChangShaChina

Personalised recommendations