We propose the use of tree automata as abstractions in the verification of branching time properties, and show several benefits. In this setting, soundness and completeness are trivial. It unifies the abundance of frameworks in the literature, and clarifies the role of concepts therein in terms of the well-studied field of automata theory. Moreover, using automata as models simplifies and generalizes results on maximal model theorems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued temporal logics. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 274–287. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Chechik, M., Easterbrook, S., Petrovykh, V.: Model-Checking over Multi-valued Logics. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, p. 72. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131. Springer, Heidelberg (1981)Google Scholar
  4. 4.
    Cleaveland, R., Iyer, P., Yankelevich, D.: Optimality in abstractions of model checking. In: Mycroft, A. (ed.) SAS 1995. LNCS, vol. 983. Springer, Heidelberg (1995)Google Scholar
  5. 5.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL (1977)Google Scholar
  6. 6.
    Dams, D., Namjoshi, K.S.: The existence of finite abstractions for branching time model checking. In: LICS (2004)Google Scholar
  7. 7.
    Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems. ACM TOPLAS 19(2), 253–291 (1997)CrossRefGoogle Scholar
  8. 8.
    Dams, D., Lakhnech, Y., Steffen, M.: Iterating transducers. J. of Logic and Algebraic Programming, 52–53, 109–127 (2002)Google Scholar
  9. 9.
    Dams, D.: Abstract Interpretation and Partition Refinement for Model Checking. PhD thesis (July 1996)Google Scholar
  10. 10.
    de Alfaro, L., Godefroid, P., Jagadeesan, R.: Three-valued abstractions of games: Uncertainty, but with precision. In: LICS (2004)Google Scholar
  11. 11.
    Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs (extended abstract). In: FOCS (1988); Full version in SIAM Journal of Computing, 29(1), 132–158 (1999)Google Scholar
  12. 12.
    Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (extended abstract). In: FOCS (1991)Google Scholar
  13. 13.
    Godefroid, P., Jagadeesan, R.: On the expressiveness of 3-valued models. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 206–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations complete. Journal of the ACM 47(2), 361–416 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Grumberg, O., Long, D.E.: Model checking and modular verification. In: ACM TOPLAS (1994)Google Scholar
  16. 16.
    Henzinger, T.A., Kupferman, O., Rajamani, S.: Fair simulation. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243. Springer, Heidelberg (1997)Google Scholar
  17. 17.
    Huth, M., Jagadeesan, R., Schmidt, D.: Modal transition systems: A foundation for three-valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, p. 155. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Janin, D., Walukiewicz, I.: Automata for the modal mu-calulus and related results. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969. Springer, Heidelberg (1995)Google Scholar
  19. 19.
    Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional mu-calculus with respect to monadic second order logic. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119. Springer, Heidelberg (1996)Google Scholar
  20. 20.
    Kesten, Y., Pnueli, A.: Verification by augmented finitary abstraction. Information and Computation 163(1), 203–243 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kupferman, O., Vardi, M.Y.: Modular model checking. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, p. 381. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS (1988)Google Scholar
  23. 23.
    Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In: LICS (1990)Google Scholar
  24. 24.
    Milner, R.: An algebraic definition of simulation between programs. In: 2nd IJCAI. William Kaufmann, San Francisco (1971)Google Scholar
  25. 25.
    Namjoshi, K.S.: Abstraction for branching time properties. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 288–300. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  27. 27.
    Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137. Springer, Heidelberg (1982)Google Scholar
  28. 28.
    Schmidt, D.A.: Closed and logical relations for over- and under-approximation of powersets. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 22–37. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    Seidl, H.: Deciding equivalence of finite tree automata. SIAM Journal of Computing 19, 424–437 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Shoham, S., Grumberg, O.: Monotonic abstraction-refinement for CTL. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 546–560. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  31. 31.
    Streett, R.S., Emerson, E.A.: The propositional mu-calculus is elementary. In: Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172. Springer, Heidelberg (1984), pp. 249–264. Springer, Heidelberg (1984); Full version in information and computation 81(3), 249–264 (1989)Google Scholar
  32. 32.
    Uribe, T.E.: Abstraction-Based Deductive-Algorithmic Verification of Reactive Systems. PhD thesis, Stanford University (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Dennis Dams
    • 1
  • Kedar S. Namjoshi
    • 1
  1. 1.Bell LabsLucent TechnologiesMurray HillUSA

Personalised recommendations