Advertisement

Identification Algorithms for Sequential Traitor Tracing

  • Marcel Fernandez
  • Miguel Soriano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3348)

Abstract

Sequential traitor tracing schemes [10,11] are generally used to deter piracy in multimedia content delivery scenarios. This is accomplished by embedding the codewords of a code with traceability properties into the content, prior to its delivery. The focus of this paper is on tracing algorithms for sequential traitor tracing schemes, where soft-decision list decoding techniques are applied in order to improve the identification process in the original sequential traitor tracing schemes, where where a brute force approach is used.

Keywords

Collusion Attack Brute Force Approach Dynamic Traitor List Decode Receive Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berkman, O., Parnas, M., Sgall, J.: Efficient dynamic traitor tracing. SIAM J. Computing 30(6), 1802–1828 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Boneh, D., Franklin, M.: An efficient public key traitor tracing scheme. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Heidelberg (1999)Google Scholar
  3. 3.
    Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 480–491. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Fiat, A., Tassa, T.: Dynamic traitor tracing. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 354–371. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-geometry codes. IEEE Trans. Inform. Theory 45(6), 1757–1767 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Guruswami, V.: List Decoding of Error-Correcting Codes. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (September 2001)Google Scholar
  7. 7.
    Hollmann, H.D.L., van Lint, J.H., Linnartz, J.P., Tolhuizen, L.M.G.M.: On codes with the Identifiable Parent Property. J. Combinatorial Theory 82(2), 121–133 (1998)zbMATHCrossRefGoogle Scholar
  8. 8.
    Koetter, R., Vardy, A.: Algebraic soft-decision decoding of Reed-Solomon codes. In: ISIT 2000 (2000)Google Scholar
  9. 9.
    Kurosawa, K., Desmedt, Y.: Optimal traitor tracing and asymetric schemes. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 145–157. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Safavi-Naini, R., Wang, Y.: Sequential traitor tracing. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 316–332. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Safavi-Naini, R., Wang, Y.: Sequential traitor tracing. IEEE Trans. Inform. Theory 49(5), 1319–1326 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Silverberg, A., Staddon, J., Walker, J.: Efficient traitor tracing algorithms using list decoding. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, p. 175. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial properties of frameproof and traceability codes. IEEE Trans. Inform. Theory 47(3), 1042–1049 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Berlin (1993)zbMATHGoogle Scholar
  15. 15.
    Trung, T.V., Martirosyan, S.: New constructions for ipp codes. In: Proc. IEEE International Symposium on Information Theory, ISIT 2003, p. 255 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Marcel Fernandez
    • 1
  • Miguel Soriano
    • 1
  1. 1.Department of Telematics EngineeringUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations