Advertisement

SINCO: Intelligent System in Disease Prevention and Control. An Architectural Approach

  • Carolina González
  • Juan C. Burguillo
  • Juan C. Vidal
  • Martin Llamas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3337)

Abstract

SINCO is a research effort to develop a software environment that contributes to the prevention and control of infectious diseases. This paper describes the system architecture already implemented where four important elements interact: (a) expert system (b) geographical information system (c) simulation component, and (d) training component. This architecture is itself a scalable, interoperable and modular approach. The system is being currently used in several health establishments as part of its validation process.

Keywords

Expert System Geographical Information System Intelligent System Pulmonary Tuberculosis Intelligent Tutor System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alleyne, G.: Health in the Americas, IInd edn (2002), http://www.paho.org
  2. 2.
    Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnología “Francisco José de Caldas” COLCIENCIAS (2003), http://www.colciencias.gov.co
  3. 3.
    Dirección Departamental de Salud del Cauca (2004), http://www.ddsc.gov.co
  4. 4.
    Park, J., Stanley, Y.W.: An integrated approach to heterogeneous expert systems. In: Proceedings of the third international conference and engineering applications of artificial intelligence and expert systems, vol. 2, pp. 53–592. ACM Press, Charleston South Carolina (1990)Google Scholar
  5. 5.
    Exquerra, N.F., Mullick, R., Gracia, E.V., Cooke., C.D., Kanchouska, E.: PERFEX: An Expert System for interpreting 3D Myocardial Perfusion. In: Expert Systems with Applications. Pergamon Press, Oxford (1992)Google Scholar
  6. 6.
    Leong, T.Y.: Murmur Clinic: A diagnostic expert system for auscultation. In: Proceedings of the 11th Annual Symposium on Computer Applications in Medical Care, pp. 166–170. IEEE, Los Alamitos (1987)Google Scholar
  7. 7.
    Etzioni, O., Minton, S.: Why EBL produces overly-specific knowledge: A critique of the Prodigy approaches. In: International Conference on Machine Learning, Aberdeen, Scotland, pp. 137–143. Morgan Kaufmann, San Francisco (1992)Google Scholar
  8. 8.
    Noon, E.C.: Spatial Data Visualization in HealthCare. In: Proceedings of the International Conference on System Sciences. IEEE, Los Alamitos (2001)Google Scholar
  9. 9.
    Bloom, B.S.: The 2-sigma problem. The search for methods of group instruction as effective as one-to-one tutoring. Educational Researcher, Vol. 13, pp. 3–16 (1984)Google Scholar
  10. 10.
    Clancey, W.J.: Overview de GUIDON. Journal of Computer-Based Instruction 10, 8–15 (1982)Google Scholar
  11. 11.
    Davis, R., Buchanan, B., Shortliffe, E.: Production Rules as a Representation for Knowledge-Based Consultation Programs. Readings in Medical Artificial Intelligence: The First Decade, pp. 98–130. Addison Wesley, Reading (1984)Google Scholar
  12. 12.
    Azevedo, R., Lajoie, S.P.: The cognitive basis for the design of a mammography interpretation tutor. International Journal of Artificial Intelligence in Education 9, 32–34 (1998)Google Scholar
  13. 13.
    Rogers, E.: VIA-RAD: a blackboard-based system for diagnostic radiology. Journal of Artificial Intelligence in Medicine 7(4), 343–60 (1995)Google Scholar
  14. 14.
    Geographic Information Systems and Mapping. ESRI. USA (2004), http://www.esri.com/company/copyright.html
  15. 15.
    Nicol, R., O’brien.: FIPA-Towards a Standard for Software Agents (2004), http://www.bt.com/bttj/vol16no3/06.pdf
  16. 16.
    Aamodt, A.: Explanation-Driven case based reasoning. In: Wess, S., Althoff, K., Ritcher, M. (eds.) Topics en Case-based reasoning, pp. 274–288. Springer, Heidelberg (1994)Google Scholar
  17. 17.
    May, J., Labrou, Y., Finin, T.: Evaluating KQML as an agent communication language. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 347–360. Springer, Heidelberg (1996)Google Scholar
  18. 18.
    Vidal, J.C.: Intelligent System for the Control of Tuberculosis. Project Research Report. SINCO-TB Project, code 1103-04-13015, contract 523-2002. Colciencias, University of Cauca. ColombiaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Carolina González
    • 1
    • 2
  • Juan C. Burguillo
    • 1
  • Juan C. Vidal
    • 2
  • Martin Llamas
    • 1
  1. 1.Departamento de Ingeniería TelemáticaUniversidad de VigoVigoSpain
  2. 2.Departamento de SistemasUniversidad del CaucaColombia

Personalised recommendations