Skip to main content

Disjoint Edges in Topological Graphs

  • Conference paper
Combinatorial Geometry and Graph Theory (IJCCGGT 2003)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3330))

Abstract

A topological graph G is a graph drawn in the plane so that its edges are represented by Jordan arcs. G is called simple, if any two edges have at most one point in common. It is shown that the maximum number of edges of a simple topological graph with n vertices and no k pairwise disjoint edges is O(nlog4k − 8 n) edges. The assumption that G is simple cannot be dropped: for every n, there exists a complete topological graph of n vertices, whose any two edges cross at most twice.

János Pach has been supported by NSF Grant CCR-00-98246, by PSC-CUNY Research Award 65392-0034, OTKA T-030012, and by OTKA T-032452. Géza Tóth has been supported by OTKA T-030012 and OTKA T-038397.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear number of edges. Combinatorica 17, 1–9 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alon, N., Erdõs, P.: Disjoint edges in geometric graphs. Discrete Comput. Geom. 4, 287–290 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chojnacki, C., Hanani, A.: Über wesentlich unplättbare Kurven im dreidimensionalen Raume. Fund. Math. 23, 135–142 (1934)

    Google Scholar 

  4. Kolman, P., Matoušek, J.: Crossing number, pair-crossing number, and expansion. Journal of Combinatorial Theory, Ser. B (to appear)

    Google Scholar 

  5. Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. Assoc. Comput. Machin. 46, 787–832 (1999)

    MATH  MathSciNet  Google Scholar 

  6. Pach, J.: Geometric graph theory. In: Lamb, J.D., Preece, D.A. (eds.) Surveys in Combinatorics. London Mathematical Society Lecture Notes, vol. 267, pp. 167–200. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  7. Pach, J., Radoičić, R., Tóth, G.: On quasi-planar graphs. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs. Contemporary Mathematics, AMS, vol. 342 (to appear)

    Google Scholar 

  8. Pach, J., Radoičić, R., Tóth, G.: Relaxing planarity for topological graphs. In: Akiyama, J., Kano, M. (eds.) JCDCG 2002. LNCS, vol. 2866, pp. 221–232. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Pach, J., Shahrokhi, F., Szegedy, M.: Applications of the crossing number. Algorithmica 16, 111–117 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Pach, J., Solymosi, J., Tóth, G.: Unavoidable configurations in complete topological graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 328–337. Springer, Heidelberg (2001); Also in: Discrete and Computational Geometry (accepted)

    Chapter  Google Scholar 

  11. Pach, J., Tóth, G.: Which crossing number is it anyway? Journal of Combinatorial Theory, Series B 80, 225–246 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Pach, J., Törõcsik, J.: Some geometric applications of Dilworth’s theorem. Discrete and Computational Geometry 12, 1–7 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Raghavan, P., Thompson, C.D.: Randomized rounding: A technique for provably good algorithms and algorithmic proof. Combinatorica 7, 365–374 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Tóth, G.: Note on geometric graphs. J. Combin. Theory, Ser. A 89, 126–132 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Valtr, P.: On geometric graphs with no k pairwise parallel edges. Discrete and Computational Geometry 19, 461–469 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pach, J., Tóth, G. (2005). Disjoint Edges in Topological Graphs. In: Akiyama, J., Baskoro, E.T., Kano, M. (eds) Combinatorial Geometry and Graph Theory. IJCCGGT 2003. Lecture Notes in Computer Science, vol 3330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30540-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30540-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24401-1

  • Online ISBN: 978-3-540-30540-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics