Advertisement

Asynchronous Automata-Theoretic Characterization of Aperiodic Trace Languages

  • Bharat Adsul
  • Milind Sohoni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3328)

Abstract

We characterize aperiodic distributed behaviours, modelled as Mazurkiewicz traces in terms of a very natural cascade product of the gossip automaton with a counter-free asynchronous automaton. The characterization strengthens the fundamental results of Schutzenberger and, McNaughton and Papert and implies that star-free, equivalently, first-order-definable trace  languages admit counter-free  asynchronous acceptors modulo the gossip automaton.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ads]
    Adsul, B.: Complete Local Logics for Reasoning about Traces, Ph.D. Thesis, Indian Institute of Technology – Bombay, Mumbai, India (2004)Google Scholar
  2. [Arb]
    Arbib, M.A. (ed.): Algebraic Theory of Machines, Languages and Semigroups. Academic Press, New York (1968)zbMATHGoogle Scholar
  3. [DK]
    Droste, M., Kuske, D.: Languages and Logical Definability in Concurrency Monoids. In: Kleine Büning, H. (ed.) CSL 1995. LNCS, vol. 1092, pp. 233–251. Springer, Heidelberg (1996)Google Scholar
  4. [DR]
    Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore (1995)Google Scholar
  5. [EM]
    Ebinger, W., Muscholl, A.: Logical Definability on Infinite Traces. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS, vol. 700, pp. 335–346. Springer, Heidelberg (1993)Google Scholar
  6. [GRS]
    Guaiana, G., Restivo, A., Salemi, S.: Star-free Trace Languages. Theoretical Computer Science 97, 301–311 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  7. [Maz]
    Mazurkiewicz, A.: Concurrent Program Schemes and Their Interpretations, Report DAIMI-PB-78, Comp Sci Dept. Aarhus University, Denmark (1978)Google Scholar
  8. [McNP]
    McNaughton, R., Papert, S.: Counter-free Automata. MIT Press, Cambridge (1971)zbMATHGoogle Scholar
  9. [MS1]
    Mukund, M., Sohoni, M.: Gossiping, Asynchronous Automata and Zielonka’s Theorem, Report TCS-94-2, Chennai Mathematical Institute. Chennai, India (1994)Google Scholar
  10. [MS2]
    Mukund, M., Sohoni, M.: Keeping Track of the Latest Gossip in a Distributed System. Distributed Computing 10(3), 137–148 (1997)CrossRefGoogle Scholar
  11. [Sch]
    Schutzenberger, M.P.: On Finite Monoids Having Only Trivial Subgroups. Information and Control 48, 190–194 (1965)CrossRefMathSciNetGoogle Scholar
  12. [Tho]
    Thomas, W.: Languages, Automata and Logic. In: Handbook of Formal Languages, vol. 3, pp. 389–456. Springer, New York (1997)Google Scholar
  13. [Zie]
    Zielonka, W.: Notes on Finite Asynchronous Automata. RAIRO Inform. Théor. Appl. 21, 99–135 (1987)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Bharat Adsul
    • 1
  • Milind Sohoni
    • 2
  1. 1.Chennai Mathematical InstituteChennaiIndia
  2. 2.Department of Computer Sc and EnggIndian Institute of TechnologyMumbaiIndia

Personalised recommendations