Advertisement

Regular Languages, Unambiguous Concatenation and Computational Complexity

  • Denis Thérien
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3328)

Abstract

Regular languages are central objects of study in computer science. Although they are quite “easy” in the traditional space-time framework of sequential computations, the situation is different when other models are considered.In this paper we consider the subclass of regular languages that can be defined via unambiguous concatenation. We show remarkable algorithmic properties of this class in the context of boolean circuits and in that of computational learning.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambainis, A., Beaudry, M., Golovkins, M., Kikusts, A., Mercer, M., Thérien, D.: Algebraic results on quantum automata. In: STACS, pp. 93–104 (2004)Google Scholar
  2. 2.
    Barrington, D.A.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC 1. In: STOC, pp. 1–5 (1986)Google Scholar
  3. 3.
    Barrington, D., Thérien, D.: Finite monoids and the fine structure of NC 1. J. ACM 35(4), 941–952 (1988)CrossRefGoogle Scholar
  4. 4.
    Bilardi, G., Preparata, F.: Characterization of associative operations with prefix circuits of constant depth and linear size. SIAM J.Computing 19(2), 246–255 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bshouty, N., Cleve, R., Gavaldà, R., Kannan, S., Tamon, C.: Oracles and queries that are sufficient for exact learning. Journal of Computer and System Sciences 52, 421–433 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Buhrman, H.: Private communication (2004)Google Scholar
  7. 7.
    Chandra, A.K., Fortune, S., Lipton, R.: Unbounded fan-in circuits and associative functions. JCSS 30, 222–234 (1985)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Chen, Z., Homer, S.: On learning counting functions with queries. In: COLT, pp. 218–227. ACM Press, New York (1994)Google Scholar
  9. 9.
    Eilenberg, S.: Automata, Languages and Machines, vol. B. Academic Press, New York (1976)zbMATHGoogle Scholar
  10. 10.
    Gavaldà, R., Thérien, D.: Learning expressions over monoids. In: STACS, pp. 283–293 (2001)Google Scholar
  11. 11.
    Gavaldà, R., Thérien, D.: Algebraic characterizations of small classes of boolean functions. In: STACS, pp. 331–342 (2003)Google Scholar
  12. 12.
    Koucký, M., Pudlák, P., Thérien, D.: Star-free languages needing linear number of wires (In preparation)Google Scholar
  13. 13.
    Moore, C., Tesson, P., Thérien, D.: Satisfiability of systems of equations over finite monoids. In: MFCS, pp. 537–547 (2001)Google Scholar
  14. 14.
    Pin, J., Weil, P.: Polynomial closure and unambiguous product. In: Fülöp, Z., Gecseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 348–359. Springer, Heidelberg (1995)Google Scholar
  15. 15.
    Pin, J.E.: Varieties of Formal Languages. Plenum, London (1986)zbMATHGoogle Scholar
  16. 16.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3, 114–125 (1959)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Schützenberger, M.: On finite monoids having only trivial subgroups. Inform. and Control 8, 190–194 (1965)zbMATHCrossRefGoogle Scholar
  18. 18.
    Schützenberger, M.: Sur le produit de concatenation non ambigu. Semigroup Forum 13, 47–75 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Schwentick, T., Thérien, D., Vollmer, H.: Partially-ordered two-way automata: A new characterization of DA. Developments in Language Theory, 239–250 (2001)Google Scholar
  20. 20.
    Simon, H.U.: Learning decision lists and trees with equivalence-queries. In: EuroCOLT, pp. 322–336 (1995)Google Scholar
  21. 21.
    Sipser, M.: Borel sets and circuit complexity. In: STOC, pp. 61–69 (1983)Google Scholar
  22. 22.
    Straubing, H.: Finite Automata, Formal Logic and Circuit Complexity. Birkhäuser, Basel (1994)zbMATHGoogle Scholar
  23. 23.
    Tesson, P., Thérien, D.: Diamonds are forever: the variety DA. In: Gomez, G., Silva, P., Pin, J.E. (eds.) Semigroups, Algorithms, Automata and Languages, WSP (2002)Google Scholar
  24. 24.
    Tesson, P., Thérien, D.: Complete classifications of the communication complexity of regular languages. In: STACS, pp. 62–73 (2003)Google Scholar
  25. 25.
    Thérien, D., Wilke, T.: Over words, two variables are as powerful as one quantifier alternation. In: STOC, pp. 234–240 (1998)Google Scholar
  26. 26.
    Thérien, D., Wilke, T.: Nesting until and since in linear temporal logic. Theory of Computing Systems 37(1), 111–131 (2004)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Denis Thérien
    • 1
  1. 1.School of Computer ScienceMcGill University 

Personalised recommendations