Advertisement

Abstract

Equational tree automata accept terms modulo equational theories, and have been used to model algebraic properties of cryptographic primitives in security protocols. A serious limitation is posed by the fact that alternation leads to undecidability in case of theories like ACU and that of Abelian groups, whereas for other theories like XOR, the decidability question has remained open. In this paper, we give a positive answer to this open question by giving effective reductions of alternating general two-way XOR automata to equivalent one-way XOR automata in 3EXPTIME, which also means that they are closed under intersection but not under complementation. We also show that emptiness of these automata, which is needed for deciding secrecy, can be decided directly in 2EXPTIME, without translating them to one-way automata. A key technique we use is the study of Branching Vector Plus-Minimum Systems (BVPMS), which are a variant of VASS (Vector Addition Systems with States), and for which we prove a pumping lemma allowing us to compute their coverability set in EXPTIME.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: Deciding the security of protocols with diffie-hellman exponentiation and products in exponents. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 124–135. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: An NP decision procedure for protocol insecurity with XOR. In: LICS 2003, pp. 261–270 (2003)Google Scholar
  3. 3.
    Comon, H., Cortier, V.: Tree automata with one memory, set constraints and cryptographic protocols. Theoretical Computer Science (2004) (to appear) Google Scholar
  4. 4.
    Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications (1997), http://www.grappa.univ-lille3.fr/tata
  5. 5.
    Comon-Lundh, H., Cortier, V.: New decidability results for fragments of first-order logic and application to cryptographic protocols. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 148–164. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Cortier, V.: Vérification Automatique des Protocoles Cryptographiques. Ph.D. thesis, ENS Cachan, France (2003)Google Scholar
  7. 7.
    Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, ch. 1, vol. 3, pp. 1–68. Springer, Heidelberg (1997)Google Scholar
  8. 8.
    Goubault-Larrecq, J.: A method for automatic cryptographic protocol verification. In: Rolim, J.D.P. (ed.) IPDPS-WS 2000. LNCS, vol. 1800, pp. 977–984. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Goubault-Larrecq, J.: Une fois qu’on n’a pas trouvé de preuve, comment le faire comprendre à un assistant de preuve? In: Ménissier-Morain, V. (ed.) Actes des 12èmes Journées Francophones des Langages Applicatifs (JFLA 2004), INRIA, collection didactique (2004)Google Scholar
  10. 10.
    Goubault-Larrecq, J., Roger, M., Verma, K.N.: Abstraction and resolution modulo AC: How to verify Diffie-Hellman-like protocols automatically. Journal of Logic and Algebraic Programming (2004) (to Appear); Available as Research Report LSV-04-7, LSV, ENS CachanGoogle Scholar
  11. 11.
    Hopcroft, J., Pansiot, J.J.: On the reachability problem for 5-dimensional vector addition systems. Theoretical Computer Science 8, 135–159 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Karp, R.M., Miller, R.E.: Parallel program schemata. J. Computer and System Sciences 3(2), 147–195 (1969)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Lugiez, D.: Counting and equality constraints for multitree automata. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 328–342. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Monniaux, D.: Abstracting cryptographic protocols with tree automata. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 149–163. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Ohsaki, H.: Beyond regularity: Equational tree automata for associative and commutative theories. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 539–553. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Paulson, L.C.: Mechanized proofs for a recursive authentication protocol. In: CSFW 1997, pp. 84–95. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  17. 17.
    Ryan, P., Schneider, S.: An attack on a recursive authentication protocol: A cautionary tale. Information Processing Letters 65(1), 7–10 (1998)CrossRefGoogle Scholar
  18. 18.
    Slutzki, G.: Alternating tree automata. Theoretical Computer science 41, 305–318 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups. IEEE Transactions on Parallel and Distributed Systems 11(8), 769–780 (2000)CrossRefGoogle Scholar
  20. 20.
    Verma, K.N.: Automates d’arbres bidirectionnels modulo théories équationnelles. Ph.D. thesis, ENS Cachan (2003)Google Scholar
  21. 21.
    Verma, K.N.: On closure under complementation of equational tree automata for theories extending AC. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 183–197. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Verma, K.N.: Two-way equational tree automata for AC-like theories: Decidability and closure properties. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 180–196. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Verma, K.N., Goubault-Larrecq, J.: Karp-Miller trees for a branching extension of VASS. Research Report LSV-04-3, LSV, ENS Cachan, France (January 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Kumar Neeraj Verma
    • 1
  1. 1.Institut für InformatikTU MünchenGermany

Personalised recommendations