Advertisement

Actively Learning to Verify Safety for FIFO Automata

  • Abhay Vardhan
  • Koushik Sen
  • Mahesh Viswanathan
  • Gul Agha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3328)

Abstract

We apply machine learning techniques to verify safety properties of finite state machines which communicate over unbounded FIFO channels. Instead of attempting to iteratively compute the reachable states, we use Angluin’s L* algorithm to learn these states symbolically as a regular language. The learnt set of reachable states is then used either to prove that the system is safe, or to produce a valid execution of the system that leads to an unsafe state (i.e. to produce a counterexample). Specifically, we assume that we are given a model of the system and we provide a novel procedure which answers both membership and equivalence queries for a representation of the reachable states. We define a new encoding scheme for representing reachable states and their witness execution; this enables the learning algorithm to analyze a larger class of FIFO systems automatically than a naive encoding would allow. We show the upper bounds on the running time and space for our method. We have implemented our approach in Java, and we demonstrate its application to a few case studies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Algorithmic improvements in regular model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 236–248. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inform. Comput. 75(2), 87–106 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berstel, J.: Transductions and Context-Free-Languages. B.G. Teubner, Stuttgart (1979)zbMATHGoogle Scholar
  4. 4.
    Boigelot, B.: Symbolic Methods for Exploring Infinite State Spaces. PhD thesis, Collection des Publications de la Faculté des Sciences Appliquées de l’Université de Liége (1999)Google Scholar
  5. 5.
    Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FIFO-channel systems with nonregular sets of configurations. Theoretical Computer Science 221(1–2), 211–250 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Finkel, A., Purushothaman Iyer, S., Sutre, G.: Well-abstracted transition systems: Application to FIFO automata. Information and Computation 181(1), 1–31 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Habermehl, P., Vojnar, T.: Regular model checking using inference of regular languages. In: Proc. of Infinity 2004, London, UK (2004) (to appear)Google Scholar
  9. 9.
    LEVER. Learning to verify tool (2004), http://osl.cs.uiuc.edu/~vardhan/lever.html
  10. 10.
  11. 11.
    Oncina, J., Garcia, P.: Inferring regular languages in polynomial update time. In: Pattern Recognition and Image Analysis. Machine Perception and Artificial Intelligence, vol. 1, pp. 49–61. World Scientific, Singapore (1992)CrossRefGoogle Scholar
  12. 12.
    Touili, T.: Regular model checking using widening techniques. ENTCS, vol. 50. Elsevier, Amsterdam (2001)Google Scholar
  13. 13.
    Vardhan, A., Sen, K., Viswanathan, M., Agha, G.: Actively learning to verify safety for FIFO automata, full version (2004), http://osl.cs.uiuc.edu/docs/lever-active/activeFifo.pdf
  14. 14.
    Vardhan, A., Sen, K., Viswanathan, M., Agha, G.: Learning to verify safety properties. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 274–289. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Abhay Vardhan
    • 1
  • Koushik Sen
    • 1
  • Mahesh Viswanathan
    • 1
  • Gul Agha
    • 1
  1. 1.Dept. of Computer ScienceUniv. of Illinois at Urbana-ChampaignUSA

Personalised recommendations