Advertisement

Abstract

A self-stabilizing distributed protocol can recover from any state-corrupting fault. A self-stabilizing protocol is called adaptive if its recovery time is proportional to the number of processors hit by the fault. General adaptive protocols are known for the special case of function computations: these are tasks that map static distributed inputs to static distributed outputs. In reactive distributed systems, input values at each node change on-line, and dynamic distributed outputs are to be generated in response in an on-line fashion. To date, only some specific reactive tasks have had an adaptive implementation. In this paper we outline the first proof that all reactive tasks admit adaptive protocols. The key ingredient of the proof is an algorithm for distributing input values in an adaptive fashion. Our algorithm is optimal, up to a constant factor, in its fault resilience, response time, and recovery time.

Keywords

Fault Injection Transient Fault Faulty Node Reactive Task Reactive Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Longer version of this paper, iew3.technion.ac.il//zipped/kp00.ps
  2. 2.
    Afek, Y., Bremler, A.: Self-stabilizing unidirectional network algorithms by power supply. Chicago J. of Theoretical Computer Science 1998(3) (December 1998)Google Scholar
  3. 3.
    Afek, Y., Dolev, S.: Local stabilizer. JPDC 62(5), 745–765 (2002)zbMATHGoogle Scholar
  4. 4.
    Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its applications to self-stabilization. Theor. Comput. Sci. 186(1-2), 199–229 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Arora, A., Gouda, M.: Distributed reset. IEEE T. Comp. 43(9), 1026–1038 (1994)zbMATHCrossRefGoogle Scholar
  6. 6.
    Arora, A., Zhang, H.: GS3: scalable self-configuration and self-healing in wireless networks. In: Proc.21st PODC, July 2002, pp. 58–67 (2002)Google Scholar
  7. 7.
    Arora, A., Zhang, H.: LSRP: Local stabilization in shortest path routing. In: Proc. 2003 Int. Conf. on Dependable Systems and Networks DSN (2003)Google Scholar
  8. 8.
    Awerbuch, B., Cidon, I., Gopal, I., Kaplan, M., Kutten, S.: Distributed control for PARIS. In: 9th PODC (1990)Google Scholar
  9. 9.
    Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time optimal self-stabilizing synchronization. In: Proc. 25th STOC, pp. 652–661 (1993)Google Scholar
  10. 10.
    Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking and correction. In: 32nd FOCS, October 1991, pp. 268–277 (1991)Google Scholar
  11. 11.
    Awerbuch, B., Patt-Shamir, B., Varghese, G., Dolev, S.: Self-stabilization by local checking and global reset. In: Proc. 8th WDAG, pp. 326–339 (1994)Google Scholar
  12. 12.
    Azar, Y., Kutten, S., Patt-Shamir, B.: Distributed error confinement. In: 22nd PODC, June 2003, pp. 33–42 (2003)Google Scholar
  13. 13.
    Beauquier, J., Genolini, C., Kutten, S.: Optimal reactive k-stabilization: the case of mutual exclusion. In: 18th PODC, May 1999, pp. 209–218 (1999)Google Scholar
  14. 14.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Comm. ACM 17(11), 643–644 (1974)zbMATHCrossRefGoogle Scholar
  15. 15.
    Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  16. 16.
    Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems. Chicago J. of Theoretical Computer Science 1997(4) (December 1997)Google Scholar
  17. 17.
    Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming only read/write atomicity. In: 9th PODC (1990)Google Scholar
  18. 18.
    Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-containing self-stabilizing algorithms. In: 15th PODC (May 1996)Google Scholar
  19. 19.
    Itkis, G., Levin, L.: Fast and lean self-stabilizing asynchronous protocols. In: 35th FOCS, November 1994, pp. 226–239 (1994)Google Scholar
  20. 20.
    Katz, S., Perry, K.: Self-stabilizing extensions for message-passing systems. In: 10th PODC, Quebec City, Canada (August 1990)Google Scholar
  21. 21.
    Kutten, S., Patt-Shamir, B.: Time-adaptive self-stabilization. In: 16th PODC, pp. 149–158 (1997)Google Scholar
  22. 22.
    Kutten, S., Peleg, D.: Fault-local distributed mending. In: 14th PODC (1995)Google Scholar
  23. 23.
    Kutten, S., Peleg, D.: Tight fault locality (extended abstract). In: 36th FOCS, pp. 704–713 (1995)Google Scholar
  24. 24.
    Manna, Z., Pnueli, A.: Models for reactivity. Acta Informatica 3, 609–678 (1993)CrossRefMathSciNetGoogle Scholar
  25. 25.
    McQuillan, J., Richer, I., Rosen, E.: The new routing algorithm for the ARPANET. IEEE Trans. Comm. 28(5), 711–719 (1980)CrossRefGoogle Scholar
  26. 26.
    Moy, J.: OSPF version 2, Internet RFC 2328 (April 1998)Google Scholar
  27. 27.
    Perlman, R.: Interconnections, 2nd edn. Addison-Wesley Publishing Co., Reading (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Shay Kutten
    • 1
  • Boaz Patt-Shamir
    • 2
  1. 1.The TechnionHaifaIsrael
  2. 2.Tel Aviv UniversityTel AvivIsrael

Personalised recommendations