Advertisement

Real-Counter Automata and Their Decision Problems

(Extended Abstract)
  • Zhe Dang
  • Oscar H. Ibarra
  • Pierluigi San Pietro
  • Gaoyan Xie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3328)

Abstract

We introduce real-counter automata, which are two-way finite automata augmented with counters that take real values. In contrast to traditional word automata that accept sequences of symbols, real-counter automata accept real words that are bounded and closed real intervals delimited by a finite number of markers. We study the membership and emptiness problems for one-way/two-way real-counter automata as well as those automata further augmented with other unbounded storage devices such as integer-counters and pushdown stacks.

Keywords

Hybrid System Decision Problem Real Word Disjunctive Normal Form Hybrid Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.: Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)Google Scholar
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A.: Back to the future: Towards a theory of timed regular languages. In: Proceedings of FOCS 1992. IEEE press, Los Alamitos (1992)Google Scholar
  4. 4.
    Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. Journal of the ACM 49(2), 172–206Google Scholar
  5. 5.
    Boigelot, B., Wolper, P.: Symbolic verification with periodic sets. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 55–67. Springer, Heidelberg (1994)Google Scholar
  6. 6.
    Bouyer, P., Petit, A., Therien, D.: An algebraic characterization of data and timed languages. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 248–261. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Transactions on Programming Languages and Systems 8(2), 244–263 (1986)zbMATHCrossRefGoogle Scholar
  8. 8.
    Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and Presburger arithmetic. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Dang, Z.: Pushdown time automata: a binary reachability characterization and safety verification. Theoretical Computer Science 302, 93–121 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dang, Z., Ibarra, O.H., Bultan, T., Kemmerer, R.A., Su, J.: Binary reachability analysis of discrete pushdown timed automata. In: CAV 2000. LNCS, vol. 1855, pp. 69–84. Springer, Heidelberg (2000)Google Scholar
  11. 11.
    Dang, Z., Ibarra, O.H., Kemmerer, R.A.: Generalized discrete timed automata: decidable approximations for safety verification. Theoretical Computer Science 296, 59–74 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dang, Z., Ibarra, O.H., San Pietro, P.: Liveness Verification of Reversal-bounded Multicounter Machines with a Free Counter. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 132–143. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Dang, Z., Ibarra, O.H., Sun, Z.: On the emptiness problem for two-way NFA with one reversal-bounded counter. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 103–114. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Dang, Z., San Pietro, P., Kemmerer, R.A.: Presburger liveness verification for discrete timed automata. Theoretical Computer Science 299, 413–438 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Fribourg, L., Olsen, H.: A decompositional approach for computing least fixed-points of Datalog programs with Z-counters. Constraints 2(3/4), 305–335 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: A Model Checker for Hybrid Systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer, Heidelberg (1997)Google Scholar
  17. 17.
    Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. Journal of the ACM 25(1), 116–133 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ibarra, O.H., Jiang, T., Tran, N., Wang, H.: New decidability results concerning two-way counter machines. SIAM J. Comput. 24, 123–137 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Keste, Y., Pnueli, A., Sifakis, J., Yovine, S.: Integration graphs: A class of decidable hybrid systems. In: Workshop on Theory of Hybrid Systems. LNCS, vol. 736, pp. 179–208. Springer, Heidelberg (1992)Google Scholar
  20. 20.
    Minsky, M.: Recursive unsolvability of Post’s problem of Tag and other topics in the theory of Turing machines. Ann. of Math. 74, 437–455 (1961)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: An approach to the description and analysis of hybrid systems. In: Hybrid Systems. LNCS, vol. 736, pp. 149–178. Springer, Heidelberg (1992)Google Scholar
  22. 22.
    Puri, A., Kopke, P., Henzinger, T., Varaiya, P.: What’s decidable about hybrid automata? In: 27th Annual ACM Symposium on Theory of Computing STOC 1995, pp. 372–382 (1995)Google Scholar
  23. 23.
    Parikh, R.: On context-free languages. Journal of the ACM 13, 570–581 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    San Pietro, P., Dang, Z.: Automatic verification of multi-queue discrete timed automata. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 159–171. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Revesz, P.Z.: A closed form for datalog queries with integer order. In: Kanellakis, P.C., Abiteboul, S. (eds.) ICDT 1990. LNCS, vol. 470, pp. 187–201. Springer, Heidelberg (1990)Google Scholar
  26. 26.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification (preliminary report). In: Proceedings 1st Annual IEEESymp.on Logic in Computer Science, LICS 1986, Cambridge,MA,USA, June 16–18, pp. 332–344. IEEE Computer Society Press, Washington, DC (1986)Google Scholar
  27. 27.
    Weispfenning, V.: Mixed real-integer linear quantifier elimination. In: Proc. Intl. Symp. on Symbolic and Algebraic Computation, Vancouver, B.C., Canada, July 29-31, pp. 129–136 (1999)Google Scholar
  28. 28.
    Xie, G., Dang, Z., Ibarra, O.H., San Pietro, P.: Dense counter machines and verification problems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 163–175. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Zhe Dang
    • 1
  • Oscar H. Ibarra
    • 2
  • Pierluigi San Pietro
    • 3
  • Gaoyan Xie
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceWashington State UniversityPullmanUSA
  2. 2.Department of Computer ScienceUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Dipartimento di Elettronica e InformazionePolitecnico di MilanoItalia

Personalised recommendations