Advertisement

Optimal Strategies in Priced Timed Game Automata

  • Patricia Bouyer
  • Franck Cassez
  • Emmanuel Fleury
  • Kim G. Larsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3328)

Abstract

Priced timed (game) automata extend timed (game) automata with costs on both locations and transitions. In this paper we focus on reachability priced timed game automata and prove that the optimal cost for winning such a game is computable under conditions concerning the non-zenoness of cost. Under stronger conditions (strictness of constraints) we prove that in case an optimal strategy exists, we can compute a state-based winning optimal strategy.

Keywords

Schedule Problem Optimal Strategy Optimal Control Problem Goal State Optimal Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Bernadsky, M., Madhusudan, P.: Optimal reachability in weighted timed games. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 122–133. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Courcoubetis, C., Henzinger, T.: Computing accumulated delays in real-time systems. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 181–193. Springer, Heidelberg (1993)Google Scholar
  3. 3.
    Alur, R., La Torre, S., Pappas, G.: Optimal paths in weighted timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Asarin, E., Maler, O.: As soon as possible: Time optimal control for timed automata. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 19–30. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In: Proc. IFAC Symp. System Structure and Control, pp. 469–474. Elsevier Science, Amsterdam (1998)Google Scholar
  6. 6.
    Behrmann, G., Fehnker, A., Hune, T., Larsen, K., Pettersson, P., Romijn, J., Vaandrager, F.: Minimum-cost reachability for priced timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Bouyer, P., Cassez, F., Fleury, E., Larsen, K.: Optimal Strategies on Priced Timed Game Automata. BRICS Report Series (February 2004)Google Scholar
  8. 8.
    Bouyer, P., et al.: Synthesis of Optimal Strategies Using HyTech. In: Proc. Games in Design and Verification GDV 2004. ENTCS, Elsevier, Amsterdam (2004)Google Scholar
  9. 9.
    Bouyer, P., Brinksma, E., Larsen, K.: Staying alive as cheaply as possible. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 203–218. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-time systems. Formal Methods in System Design 1(4), 385–415 (1992)zbMATHCrossRefGoogle Scholar
  11. 11.
    De Alfaro, L., Henzinger, T., Majumdar, R.: Symbolic algorithms for infinite-state games. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 536–550. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Henzinger, T.: The theory of hybrid automata. In: Proc. 11th IEEE Annual Symp. Logic in Computer Science LICS 1996, pp. 278–292. IEEE Computer Society Press, Los Alamitos (1996)CrossRefGoogle Scholar
  13. 13.
    Hune, T., Larsen, K., Pettersson, P.: Guided synthesis of control programs using uppaal. In: Proc. IEEE ICDS Int. Work. Distributed Systems Verification and Validation, pp. E15–E22. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  14. 14.
    La Torre, S., Mukhopadhyay, S., Murano, A.: Optimal-reachability and control for acyclic weighted timed automata. In: Proc. 2nd IFIP Int. Conf. Theoretical Computer Science TCS 2002. IFIP Proceedings, vol. 223, pp. 485–497. Kluwer, Dordrecht (2002)Google Scholar
  15. 15.
    Larsen, K.: Resource-efficient scheduling for real time systems. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 16–19. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Larsen, K., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson, P., Romijn, J.: As cheap as possible: Efficient cost-optimal reachability for priced timed automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 493–505. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)Google Scholar
  18. 18.
    Niebert, P., Tripakis, S., Yovine, S.: Minimum-time reachability for timed automata. In: Proc. 8th IEEE Mediterranean Conf. Control and Automation (2000)Google Scholar
  19. 19.
    Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)Google Scholar
  20. 20.
    Wong-Toi, H.: The synthesis of controllers for linear hybrid automata. In: Proc. 36th IEEE Conf. Decision and Control, pp. 4607–4612. IEEE Computer Society Press, Los Alamitos (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Patricia Bouyer
    • 1
  • Franck Cassez
    • 2
  • Emmanuel Fleury
    • 3
  • Kim G. Larsen
    • 3
  1. 1.LSV, UMR 8643, CNRS & ENS de CachanFrance
  2. 2.IRCCyN, UMR 6597, CNRSFrance
  3. 3.Computer Science Department, BRICSAalborg UniversityDenmark

Personalised recommendations