We investigate the class of disjoint NP-pairs under different reductions. The structure of this class is intimately linked to the simulation order of propositional proof systems, and we make use of the relationship between propositional proof systems and theories of bounded arithmetic as the main tool of our analysis. Specifically we exhibit a pair which is complete under strong reductions for all disjoint NP-pairs representable in a theory. We use these pairs to explain the simulation order of NP-pairs under these reductions. As corollaries we also get simplified proofs of results obtained earlier in [3] and [5].


Polynomial Time Proof System Propositional Variable Propositional Formula Boolean Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cook, S., Reckhow, R.: The relative efficiency of propositional proof systems. Journal of Symbolic Logic 44, 36–50 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Glaßer, C., Selman, A., Sengupta, S., Zhang, L.: Disjoint NP-pairs. In: Proceedings 18th Annual IEEE Conference on Computational Complexity, pp. 313–332 (2003)Google Scholar
  3. 3.
    Glaßer, C., Selman, A., Sengupta, S.: Reductions between disjoint NP-pairs. In: Proceedings 19th Annual IEEE Conference on Computational Complexity (2004)Google Scholar
  4. 4.
    Grollmann, J., Selman, A.: Complexity measures for public-key cryptosystems. SIAM Journal on Computing 17(2), 309–335 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Köbler, J., Messner, J., Torán, J.: Optimal proof systems imply complete sets for promise classes. Information and Computation 184, 71–92 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory. In: Encyclopedia of Mathematics and Its Applications, vol. 60. Cambridge University Press, Cambridge (1995)Google Scholar
  7. 7.
    Krajíček, J.: Implicit proofs. Journal of Symbolic Logic 69(2), 387–397 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Krajíček, J., Pudlák, P.: Quantified propositional calculi and fragments of bounded arithmetic. Zeitschr. f. math. Logik und Grundlagen d. Math. 36, 29–46 (1990)zbMATHCrossRefGoogle Scholar
  9. 9.
    Krajíček, J., Pudlák, P.: Some consequences of cryptographical conjectures for \(S^1_2\) and EF. Information and Computation 140(1), 82–94 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Pudlák, P.: The lengths of proofs. In: Buss, S.R. (ed.) Handbook of Proof Theory, pp. 547–637. Elsevier, Amsterdam (1998)CrossRefGoogle Scholar
  11. 11.
    Pudlák, P.: On reducibility and symmetry of disjoint NP-pairs. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 621–632. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Razborov, A.A.: On provably disjoint NP-pairs. Technical Report TR94-006, Electronic Colloquium on Computational Complexity (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Olaf Beyersdorff
    • 1
  1. 1.Institut für InformatikHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations