Advertisement

Sequential Probabilistic Grass Field Segmentation of Soccer Video Images

  • Kaveh Kangarloo
  • Ehsanollah Kabir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3322)

Abstract

In this paper, we present a method for segmentation of grass field of soccer video images. Since the grass field is observed as a green and nearly soft region, the hue and a feature representing the color dispersion in horizontal and vertical directions are used to model the grass field as a mixture of Gaussian components. At first, the grass field is roughly segmented. On the base of grass field model, the probability density function of non-grass field is estimated. Finally using the Bayes theory, in a recurrent process the grass field is finally segmented.

Keywords

Football Grass-Field Color Texture Gaussian Mixture Model Bayes theory Segmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pal, N.R., Pal, S.K.: A Review on Image Segmentation Techniques. Pattern Recognition Letters 26(9), 1277–1294 (1993)Google Scholar
  2. 2.
    Southall, B., Buxton, B., Marchant, J., Hague, T.: On the Performance Characterization of Image Segmentation Algorithms: A Case Study. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 351–365. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Stiller, C., Konrad, J.: Estimating motion in image sequences. IEEE Signal Processing Magazine 16, 70–91 (1999)CrossRefGoogle Scholar
  4. 4.
    Cheng, H.D., Jiang, X.H., Sun, Y., Wang, J.: Color image segmentation: advances and prospects. Pattern Recognition 34, 2259–2281 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Fraley, C., Raftery, A.E.: How many clusters? Which clustering method? Answers via model-based cluster analysis. Technical Report 329, Department of Statistic University of Washington (1998)Google Scholar
  6. 6.
    Jianbo, S., Malik, J.: Normalized cuts and image segmentation. IEEE Transaction on Pattern analysis and Machine Intelligence 22, 888–905 (2000)CrossRefGoogle Scholar
  7. 7.
    Seo, Y., Choi, S., Kim, H., Hong, K.S.: Where are the ball and players?: Soccer Game Analysis with Color-based Tracking and Image Mosaic. In: Proceedings of Int. Conference on Image Analysis and Processing (ICIAP), pp. 196–203 (1997)Google Scholar
  8. 8.
    Utsumi, O., Miura, K., Ide, I., Sakai, S., Tanaka, H.: An Object Detection Method for Describing Soccer Games from Video. In: Proceedings of IEEE Int. Conference on Multimedia and Expo (ICME), vol. 1, pp. 45–48 (2002)Google Scholar
  9. 9.
    Sudhir, G., Lee, J.C.M., Jain, A.K.: Automatic Classification of Tennis Video for High-level Content-based Retrieval. In: International Workshop on Content-Based Access of Image and Video Databases (CAIVD), pp. 81–90 (1998)Google Scholar
  10. 10.
    Hua, W., Han, M., Gong, Y.: Baseball Scene Classification Using Multimedia Features. In: Proceedings of IEEE International Conference on Multimedia and Expo., vol. 1, pp. 821–824 (2002)Google Scholar
  11. 11.
    Xu, P., Xie, L., Chang, S.F., Divakaran, A., Vetro, A., Sun, H.: Algorithms and System for Segmentation and Structure Analysis in Soccer Video. In: Proceedings of IEEE Int. Conference on Multimedia and Expo (ICME), pp. 928–931 (2001)Google Scholar
  12. 12.
    Raja, Y., McKenna, S., Gong, S.: Color model selection and adaptation in dynamic scenes. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 460–474. Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Liu, J.G., Moore, J.M.: Hue image RGB color composition. A simple technique to suppress shadow and enhance spectral signature. International Journal of Remote Sensing 1, 1521–1530 (1990)CrossRefGoogle Scholar
  14. 14.
    Materka, A., Strzelecki, M.: Texture analysis methods – A review. Technical Report, University of Lodz, Institute of Electronics, COST B11 Technical Report, Brussels (1998)Google Scholar
  15. 15.
    Williams, C.K.I., Barber, D.: Bayesian classification with Gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 1342–1352 (1998)CrossRefGoogle Scholar
  16. 16.
    McLachlan, Krishnan, T.: The EM algorithm and extensions. Wiley, Chichester (1997)zbMATHGoogle Scholar
  17. 17.
    ISO-13818-2: Generic Coding of moving pictures and associated audio (MPEG-2) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Kaveh Kangarloo
    • 1
    • 2
  • Ehsanollah Kabir
    • 3
  1. 1.Dept. of Electrical Eng.Azad University, Central Tehran BranchTehranIran
  2. 2.Dept. of Electrical Eng.Azad University, Science and Research unitTehranIran
  3. 3.Dept. of Electrical Eng.Tarbiat Modarres UniversityTehranIran

Personalised recommendations