Advertisement

Surface Smoothing for Enhancement of 3D Data Using Curvature-Based Adaptive Regularization

  • Hyunjong Ki
  • Jeongho Shin
  • Junghoon Jung
  • Seongwon Lee
  • Joonki Paik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3322)

Abstract

This paper presents both standard and adaptive versions of regularized surface smoothing algorithms for 3D image enhancement. We incorporated both area decreasing flow and the median constraint as multiple regularization functionals. The corresponding regularization parameters adaptively changes according to the local curvature value. The combination of area decreasing flow and the median constraint can efficiently remove various types of noise, such as Gaussian, impulsive, or mixed types. The adaptive version of the proposed regularized smoothing algorithm changes regularization parameters based on local curvature for preserving local edges and creases that reflects important surface information in 3D data. In addition to the theoretical expansion, experimental results show that the proposed algorithms can significantly enhance 3D data acquired by both laser range sensors and disparity maps from stereo images.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1987)Google Scholar
  2. 2.
    Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Analysis, Machine Intelligence 6, 721–741 (1984)zbMATHCrossRefGoogle Scholar
  3. 3.
    Terzopoulos, D.: The computation of visual surface representations. IEEE Trans. Pattern Analysis, Machine Intelligence 10, 417–438 (1988)zbMATHCrossRefGoogle Scholar
  4. 4.
    Gokmen, M., Li, C.-C.: Edge detection and surface reconstruction using refined regularization. IEEE Trans. Pattern Analysis, Machine Intelligence 15, 492–499 (1993)CrossRefGoogle Scholar
  5. 5.
    Katsaggelos, A.K., Biemond, J., Schafer, R.W., Mersereau, R.M.: A regularized iterative image restoration algorithms. IEEE Trans. Signal Processing 39, 914–929 (1991)CrossRefGoogle Scholar
  6. 6.
    Sinha, S.S., Schunck, B.G.: A two-stage algorithm for discontinuity-preserving surface reconstruction. IEEE Trans. Pattern Analysis, Machine Intelligence 14, 36–55 (1992)CrossRefGoogle Scholar
  7. 7.
    Umasuthan, M., Wallace, A.M.: Outlier removal and discontinuity preserving smoothing of range data. IEE Proc.-Vis. Image Signal Process 143, 191–200 (1996)CrossRefGoogle Scholar
  8. 8.
    Hoover, A.: The Space Envelope Representation for 3D Scenes, PhD thesis, Department of Computer Science and Engineering, University of South Florida (1996)Google Scholar
  9. 9.
    Carmo, M.D.: Differential geometry of curves and surfaces. Prentice Hall, Englewood Cliffs (1976)zbMATHGoogle Scholar
  10. 10.
    June, H.Y., David, M.C.: Discontinuity-preserving and viewpoint invariant reconstruction of visible surface using a first order regularization. IEEE Trans. Pattern Analysis, Machine Intelligence 17 (1995)Google Scholar
  11. 11.
    Stevenson, R.L., Delp, E.J.: Viewpoint invariant recovery of visual surface from sparse data. IEEE Trans. Pattern Analysis, Machine Intelligence 14, 897–909 (1992)CrossRefGoogle Scholar
  12. 12.
    Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer Vision. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  13. 13.
    Shin, J.H., Sun, Y., Joung, W.C., Paik, J.K., Abidi, M.A.: Regularized noise smoothing of dense range image using directional Laplacian operators. In: Proc. SPIE Three-Dimensional Image Capture and Applications IV, vol. 4298, pp. 119–126 (2001)Google Scholar
  14. 14.
    Sun, Y., Paik, J.K., Price, J.R., Abidi, M.A.: Dense range image smoothing using adaptive regularization. In: Proc. 2000 Int. Conf. Image Processing, vol. 2, pp. 10–13 (2000)Google Scholar
  15. 15.
    Ki, H., Shin, J., Paik, J.: Regularized surface smoothing for enhancement of range data. Proc. IEEK 26, 1903–1906 (2003) (in Korean) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Hyunjong Ki
    • 1
  • Jeongho Shin
    • 1
  • Junghoon Jung
    • 1
  • Seongwon Lee
    • 1
  • Joonki Paik
    • 1
  1. 1.Image Processing and Intelligent Systems Lab, Department of Image Engineering, Graduate School of Advanced Imaging Science, Multimedia, and FilmChung-Ang UniversitySeoulKorea

Personalised recommendations