Advertisement

Magnification in Digital Topology

  • Akira Nakamura
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3322)

Abstract

When the author was working with Prof. Azriel Rosenfeld on joint research, we proposed a very strong deformation technique in digital topology called “magnification”. In this paper, the methods are explained in detail and some applications are given.

Keywords

Simple Point White Pixel Hexagonal Array Digital Picture Rectangular Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aizawa, K., Nakamura, A.: Grammars on the hexagonal array. Inter. J. of Pattern Recognition and Artificial Intteligence 3, 469–477 (1989)CrossRefGoogle Scholar
  2. 2.
    Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)zbMATHGoogle Scholar
  3. 3.
    Kong, T.Y.: Topology-preserving deletion of 1’s from 2-, 3-, 4-dimensional binary images. LNCS, vol. 1347, pp. 3–18 (1997)Google Scholar
  4. 4.
    Kong, T.Y., Roscoe, A.W.: Simple points in 4-dimensional (and higher-dimensional) binary images (manuscript) April 2 (2004)Google Scholar
  5. 5.
    Latecki, L., Eckhard, U., Rosenfeld, A.: Well-compsed sets. Comput. Vision Image Understanding 61, 70–83 (1995)CrossRefGoogle Scholar
  6. 6.
    Latecki, L.: Multicolor well-composed pictures. Pattern Recgnition Letters 16, 425–431 (1995)CrossRefGoogle Scholar
  7. 7.
    Latecki, L.: 3D well-composed pictures. Graphical Models and Image Processing 59, 164–172 (1997)CrossRefGoogle Scholar
  8. 8.
    Nakamura, A., Rosenfeld, A.: Digital konts. Pattern Recognition 33, 1541–1553 (2000)CrossRefGoogle Scholar
  9. 9.
    Nakamura, A., Rosenfeld, A.: Topology-preserving deformations of fuzzy digital pictures. In: Kerre, E.E., Nachtegael, M. (eds.) Fuzzy Techniques in Image Processing, pp. 394–404. Physica, Heidelberg (2000)Google Scholar
  10. 10.
    Nakamura, A.: Picture languages. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 127–155. Kluwer Academic Publishers, Boston (2001)Google Scholar
  11. 11.
    Nakamura, A.: Magnification method of 4D digital pictures (draft paper). Google Scholar
  12. 12.
    Rosenfeld, A.: Connectivity in digital pictures. J. of ACM 17, 146–160 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Rosenfeld, A.: Arcs and curves in digital pictures. J of ACM 20, 81–87 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Rosenfeld, A.: Adjacency in digital pictures. Information and Control 26, 24–33 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Rosenfeld, A.: A characterization of parallel thinning algorithms. Information and Control 29, 286–291 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Rosenfeld, A.: A converse to the Jordan curve theorem for digital curves. Information and Control 29, 292–293 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Rosenfeld, A.: Picture Languages. Academic Press, New York (1979)zbMATHGoogle Scholar
  18. 18.
    Rosenfeld, A.: Fuzzy digital topology. Information and Control 40, 76–87 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Rosenfeld, A., Nakamura, A.: Local deformation of digital curves. Pattern Recognition Letters 18, 613–620 (1997)CrossRefGoogle Scholar
  20. 20.
    Rosenfeld, A., Kong, T.Y., Nakamura, A.: Topology-preserving deformations of two-valued digital pictures. Graphical Models and Image Processing 60, 24–34 (1998)CrossRefGoogle Scholar
  21. 21.
    Rosenfeld, A., Saha, P.K., Nakamura, A.: Interchangeable pairs of pixels in two-valued digital images. Pattern Recognition 34, 1853–1865 (2001)zbMATHCrossRefGoogle Scholar
  22. 22.
    Rosenfeld, A., Nakamura, A.: Two simply connected sets that have the same area are IP-equivalent. Pattern Recognition 35, 537–541 (2002)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Akira Nakamura
    • 1
  1. 1.Hiroshima University 

Personalised recommendations