Advertisement

On the Language of Standard Discrete Planes and Surfaces

  • Damien Jamet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3322)

Abstract

A standard discrete plane is a subset of ℤ3 verifying the double Diophantine inequality μax + by + cz < μ + ω, with (a,b,c) ≠ (0,0,0). In the present paper we introduce a generalization of this notion, namely the (1,1,1)-discrete surfaces. We first study a combinatorial representation of discrete surfaces as two-dimensional sequences over a three-letter alphabet and show how to use this combinatorial point of view for the recognition problem for these discrete surfaces. We then apply this combinatorial representation to the standard discrete planes and give a first attempt of to generalize the study of the dual space of parameters for the latter [VC00].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABS04]
    Arnoux, P., Berthé, V., Siegel, A.: Two-dimensional iterated morphisms and discrete planes. Theoretical Computer Science 319, 145–176 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [And93]
    Andrès, É.: Le plan discret. In: Colloque de géométrie discrète en imagerie: fondements et applications (September 1993)Google Scholar
  3. [BCK04]
    Brimkov, V., Coeurjolly, D., Klette, R.: Digital planarity - a review. Technical Report RR2004-24, Laboratoire LIRIS - Université Lumière Lyon 2 (May 2004)Google Scholar
  4. [Buz02]
    Buzer, L.: An incremental linear time algorithm for digital line and plane recognition using a linear incremental feasibility problem. In: Proceedings of the 10th International Conference on Discrete Geometry for Computer Imagery, pp. 372–381. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. [BT04]
    Berthé, V., Tijdeman, R.: Lattices and multi-dimensional words. Theoretical Computer Science 319, 177–202 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [BV00a]
    Berthé, V., Vuillon, L.: Suites doubles de basse complexité. Journal de Théorie des Nombres de Bordeaux 12, 179–208 (2000)zbMATHGoogle Scholar
  7. [BV00b]
    Berthé, V., Vuillon, L.: Tilings and rotations on the torus: a two-dimensional generalization of sturmian sequences. Discrete Mathematics 223, 27–53 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  8. [Col02]
    Jacob-Da Col, M.A.: About local configurations in arithmetic planes. Theor. Comput. Sci. 283(1), 183–201 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. [DRR96]
    Debled-Rennesson, I., Réveillès, J.P.: Incremental algorithm for recognizing pieces of digital planes. In: Melter, R.A., Wu, A.Y., Latecki, L. (eds.) SPIE Proceedings of Vision Geometry V, August 1996, vol. 2826, pp. 140–151 (1996)Google Scholar
  10. [Fra95]
    Françon, J.: Discrete combinatorial surfaces. Graph. Models Image Process 57(1), 20–26 (1995)CrossRefGoogle Scholar
  11. [Gér99]
    Gérard, Y.: Local configurations of digital hyperplanes. In: Proceedings of the 8th International Conference on Discrete Geometry for Computer Imagery, pp. 65–75. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. [KI00]
    Kenmochi, Y., Imiya, A.: Naive planes as discrete combinatorial surfaces. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 249–261. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. [Lot02]
    Lothaire: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  14. [Mal97]
    Malgouyres, R.: A definition of surfaces of Z 3. a new 3d discrete jordan theorem. Theor. Comput. Sci. 186(1-2), 1–41 (1997)zbMATHMathSciNetGoogle Scholar
  15. [Meg84]
    Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. ACM 31(1), 114–127 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  16. [PS85]
    Preparata, F.P., Shamos, M.I.: Computational geometry: an introduction. Springer, Heidelberg (1985)Google Scholar
  17. [Rév91]
    Réveillès, J.P.: Géométrie discète, calcul en nombres entiers et algorithmique. PhD thesis, Université Louis Pasteur, Strasbourg (1991)Google Scholar
  18. [RKW91]
    Rosenfeld, A., Kong, T.Y., Wu, A.Y.: Digital surfaces. CVGIP: Graph. Models Image Process 53(4), 305–312 (1991)zbMATHCrossRefGoogle Scholar
  19. [VC99]
    Vittone, J., Chassery, J.M.: (n, m)-cubes and farey nets for naive planes understanding. In: Proceedings of the 8th International Conference on Discrete Geometry for Computer Imagery, pp. 76–90. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. [VC00]
    Vittone, J., Chassery, J.M.: Recognition of digital naive planes and polyhedrization. In: DGCI: International Workshop on Discrete Geometry for Computer Imagery, pp. 297–307 (2000)Google Scholar
  21. [Vui98]
    Vuillon, L.: Combinatoire des motifs d’une suite sturmienne bidimensionnelle. Theor. Comput. Sci. 209(1-2), 261–285 (1998)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Damien Jamet
    • 1
  1. 1.LIRMMUniversité Montpellier IIMontpellier Cedex 5France

Personalised recommendations