Skip to main content

The Role of the Basal Ganglia in Exploratory Behavior in a Model Based on Reinforcement Learning

  • Conference paper
Book cover Neural Information Processing (ICONIP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3316))

Included in the following conference series:

Abstract

We present a model of basal ganglia as a key player in exploratory behavior. The model describes exploration of a virtual rat in a simulated “water pool” experiment. The virtual rat is trained using a reward-based or reinforcement learning paradigm which requires units with stochastic behavior for exploration of the system’s state space. We model the STN-GPe system as a pair of neuronal layers with oscillatory dynamics, exhibiting a variety of dynamic regimes like chaos, traveling waves and clustering. Invoking the property of chaotic systems to explore a state space, we suggest that the complex “exploratory” dynamics of STN-GPe system in conjunction with dopamine-based reward signaling present the two key ingredients of a reinforcement learning system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Redgrave, P., Prescott, T.J., Gurney, K.: The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89, 1009–1023 (1999)

    Article  Google Scholar 

  2. Berns, G.S., Sejnowski, T.J.: A computational model of how the Basal Ganglia produce sequences. Journal of Cognitive Neuroscience 10(1), 108–121 (1998)

    Article  Google Scholar 

  3. Houk, J.C., Davis, J.L., Beiser, D.G.: Models of Information Processing in the Basal Ganglia. MIT Press, Cambridge (1995)

    Google Scholar 

  4. Bevan, M.D., Magill, P.J., Terman, D., Bolam, J.P., Wilson, C.J.: Move To The Rhythm: Oscillations In The Subthalamic Nucleus-External Globus Pallidus Network. In: Trends in Neuroscience (2003) (In press)

    Google Scholar 

  5. Chirikov, B.: A universal instability of many-dimensional oscillator systems. Phys. Rev. 52, 263–379 (1979)

    MathSciNet  Google Scholar 

  6. Chakravarthy, V.S., Thomas, S.T., Nair, N.: A model for scheduling motor unit recruitment in skeletal muscle. In: International Conference on Theoretical Neurobiology, National Brain Research Center, Gurgoan, February, 24-26 (2003)

    Google Scholar 

  7. Gillies, A., Willshaw, D., Li, Z.: Subthalamic-pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. In: Proc R Soc Lond B Biol Sci., March 22, vol. 269(1491), pp. 545–551 (2002)

    Google Scholar 

  8. Terman, D., Rubin, J.E., Yew, A.C., Wilson, C.J.: Activity Patterns in a Model for the Subthalamopallidal Network of the Basal Ganglia. In: J Neurosci., April 1, vol. 22(7), pp. 2963–2976 (2002)

    Google Scholar 

  9. Harner, A.M.: An Introduction to Basal Ganglia Function. Boston University, Boston (1997)

    Google Scholar 

  10. Obeso, J.A., Rodriguez-Oroz, M.C., Rodriguez, M., Arbizu, J., Gimenez-Amaya, J.M.: The Basal Ganglia and Disorders of Movement: Pathophysiological Mechanisms. News Physiol Sci. 17, 51–55 (2002)

    Google Scholar 

  11. Montague, Dayan, Sejnowski: A Framework for Mesencephalic Dopamine Systems Based on Predictive Hebbian Learning. The Journal of Neuroscience 16(5), 1936–1947 (1996)

    Google Scholar 

  12. Sridharan, D.: Human Factors in Aviation: Willed action and its disorders, MTech Thesis, Department of Aerospace Engineering, IIT, Madras, India (2004)

    Google Scholar 

  13. Barto, A.G.: Reinforcement Learning. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks (1st Edition), MIT Press, Cambridge (1999)

    Google Scholar 

  14. Morris, R.G.M., Garrud, P., Rawlins, J.N.P.: Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982)

    Article  Google Scholar 

  15. Skarda, C.A., Freeman, W.J.: How brain makes chaos in order to make sense of the world. Behavioral and Brain Sciences 10, 161–195 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Devarajan, S., Prashanth, P.S., Chakravarthy, V.S. (2004). The Role of the Basal Ganglia in Exploratory Behavior in a Model Based on Reinforcement Learning. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds) Neural Information Processing. ICONIP 2004. Lecture Notes in Computer Science, vol 3316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30499-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30499-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23931-4

  • Online ISBN: 978-3-540-30499-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics