A Personal Knowledge Assistant for Knowledge Storing, Integrating, and Querying

  • Bogdan D. Czejdo
  • John Biguenet
  • Jonathan Biguenet
  • J. Czejdo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3307)


Using the underlying Unified Modeling Language (UML) for knowledge modeling, we discuss how to create a non-graphical interface to UML models and show how this interface can be used to capture knowledge from a sample domain specified in a natural language. We demonstrate the techniques of transforming a natural language text into standard sentences consisting of three tuples: known information – relationship – unknown information. We also discuss how to integrate the standard sentences with existing knowledge through a guided knowledge-discovery process in which more precise information is requested and added to the diagram in a controlled manner.

Based on this knowledge-processing methodology, a software prototype was developed. Using such software, existing PDAs or specialized hardware can allow the student to process the knowledge. These handheld devices can store, process, and retrieve knowledge from Knowledge Databases. We refer to such devices as Personal Knowledge Assistants (PKA).


Unify Modeling Language Knowledge Modeling Knowledge Database Unify Modeling Language Model Frequent Communication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnheim, R.: Visual Thinking. University of California Press, Berkeley (1969)Google Scholar
  2. 2.
    Bemers-Lee, T., Hendler, J., Lassila, 0.: The Semantic Web. Sci. Am. 284(5), 34–43 (2001)CrossRefGoogle Scholar
  3. 3.
    Brachman, R.: On the Epistemological Status of Semantic Networks. In: Findlee, N.V. (ed.) Associative Networks: Representation and Use of Knowledge by Computer, pp. 3–50. Academic, New York (1979)Google Scholar
  4. 4.
    Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide. Addison Wesley, Reading (1999)Google Scholar
  5. 5.
    Chein, M., Mugnier, M.L.: Conceptual Graphs: Fundamental Notions. Rev. Intell. Artif. 6(4), 365–406 (1992)CrossRefGoogle Scholar
  6. 6.
    Czejdo, B., Mappus, R., Messa, K.: The Impact of UML Diagrams on Knowledge Modeling, Discovery and Presentations. Journal of Information Technology Impact 3(1), 25–38 (2003)Google Scholar
  7. 7.
    Czejdo, B., Czejdo, J., Lehman, J., Messa, K.: Graphical Queries for XML Documents and Their Applications for Accessing Knowledge in UML Diagrams. In: Proceedings of the First Symposium on Databases, Data Warehousing and Knowledge Discovery, Baden Baden, Germany, pp. 69–85 (2003)Google Scholar
  8. 8.
    Czejdo, B., Czejdo, J., Eick, C., Messa, K., Vernace, M.: Rules in UML Class Diagrams, Opportunities of Change. In: Proceedings of the Third International Economic Congress, Sopot, Poland, pp. 289–298 (2003)Google Scholar
  9. 9.
    Czejdo, B., Sobaniec, C.: Using a Semantic Model and XML for Document Annotations. LNCS, pp. 236–241. Springer, Heidelberg (2000)Google Scholar
  10. 10.
    Delteil, A., Faron, C.: A Graph-Based Knowledge Representation Language. In: Proceedings of the 15th European Conference on Artificial Intelligence (ECAI), Lyon, France (2002)Google Scholar
  11. 11.
    Dori, D.: Object-Process Methodology -a holistic systems paradigm. Springer, Heidelberg (2002), Google Scholar
  12. 12.
    Dori, D.: Why Significant Change in UML Is Unlikely. Commun. ACM 45(11), 82–85 (2002)CrossRefGoogle Scholar
  13. 13.
    Dori, D., Reinhartz-Berger, I., Sturm, A.: OPCAT—A Bimodal CASE Tool for Object- Process Based System Development. In: Proceedings of the IEEE/ACM 5th International Conference on Enterprise Information Systems (ICEIS 2003), Angers, France, pp. 286–291 (2003),
  14. 14.
    Lehrnan, F. (ed.): Semantic Networks in Artificial Intelligence. Pergamon, Oxford (1999)Google Scholar
  15. 15.
    Mayer, R.E.: Multimedia Learning. Cambridge University Press, New York (2002)Google Scholar
  16. 16.
    McTear, M.F. (ed.): Understanding Cognitive Science, Ellis Horwood, Chichester, UK (1998)Google Scholar
  17. 17.
    Novak, J.D.: A Theory of Education. Cornell University Press, Ithaca (1977)Google Scholar
  18. 18.
    Novak, J.D., Gowin, D.B.: Learning How to Learn. Cambridge University Press, New York (1984)Google Scholar
  19. 19.
    OMG UML1.4. Object Management Group Unified Modeling Language v.l.4 (2001)Google Scholar
  20. 20.
    Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual. Addison-Wesley, Reading (1999)Google Scholar
  21. 21.
    Rumbaugh, J.: Objects in the Constitution: Enterprise Modeling. Journal of Object Oriented Programming (1993)Google Scholar
  22. 22.
    Schulte, R., Biguenet, J.: Theories of Translation. The University of Chicago Press, Chicago (1992)Google Scholar
  23. 23.
    Smith, M.K., McGuinness, D., Volz, R., Welty, C.: Web Ontology Language (OWL) Guide Version 1.0. W3CWorking Draft (2002)Google Scholar
  24. 24.
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)zbMATHGoogle Scholar
  25. 25.
    Sowa, I.F.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole, Pacific Grove (1999)Google Scholar
  26. 26.
    Walpole, B.: Pocket Book of The Human Body. Wanderer, New York (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Bogdan D. Czejdo
    • 1
  • John Biguenet
    • 1
  • Jonathan Biguenet
    • 1
  • J. Czejdo
    • 2
  1. 1.Loyola University New OrleansUSA
  2. 2.Edinboro University of Pennsylvania EdinboroUSA

Personalised recommendations