Advertisement

A Concurrent System of Multi-ported Processes with Causal Dependency

  • Tatsuya Abe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3302)

Abstract

The π-calculus is a concurrent system invented by Milner et al. in which concurrent computation is expressed as interaction of processes through name-passing. Building on the concept of name-passing, we propose a new concurrent system based on multi-ports, whereas the π-calculus is based on single-ports. Although our trial is not the first one in constructing a concurrent system based on multi-ports, ours is unique in that it is only extended in terms of multi-ports. This simplicity makes it possible to control self-communication of processes. Besides, it is an extension of the π-calculus, because a single-port can be expressed as a restriction in our system. These suggest that the concept of multi-ports is natural. Furthermore, it is more expressive than other calculi including the original π-calculus in spite of this simplicity. Even the strong call-by-name λ-calculus can be embedded into our system with respect to convergence and divergence, while it has not been successfully done into the original π-calculus.

Keywords

Normal Form Transitive Closure Input Process Parallel Composition Congruence Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit substitutions. In: Proceedings of POPL 1990: the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 31–46 (1990)Google Scholar
  2. 2.
    Benaissa, Z.-E.-A., Briaud, D., Lescanne, P., Rouyer-Degli, J.: λν, a calculus of explicit substitutions which preserves strong normalisation. Journal of Functional Programming 6(5), 699–722 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bloo, R.: Preservation of strong normalisation for explicit substitution. Computer Science Report 95-08, Eindhoven University of Technology (1995)Google Scholar
  4. 4.
    Bloo, R., Rose, K.H.: Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection. In: Proceedings of CSN 1995: Computer Science in the Netherlands (1995)Google Scholar
  5. 5.
    Fu, Y.: A proof-theoretical approach to communication. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 325–335. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Kamareddine, F., Nederpelt, R.: On stepwise explicit substitution. International Journal of Foundations of Computer Science 4(3), 197–240 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kamareddine, F., Rios, A.: A lambda-calculus à la De Bruijn with explicit substitutions. In: Swierstra, S.D. (ed.) PLILP 1995. LNCS, vol. 982, pp. 45–62. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Merro, M., Sangiorgi, D.: On asynchrony in name-passing calculi. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, p. 856. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Milner, R.: Functions as processes. Journal of Mathematical Structures in Computer Science 2(2), 119–141 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Milner, R.: The polyadic π-calculus: a tutorial. In: Bauer, F.L., Brauer, W., Schwichtenberg, H. (eds.) Logic and Algebra of Specification, pp. 203–246. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  11. 11.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Information and Computation 100(1), 1–77 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Parrow, J., Victor, B.: The update calculus. In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 409–423. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Parrow, J., Victor, B.: The fusion calculus: Expressiveness and symmetry in mobile processes. In: Proceedings of LICS 1998: the 13th IEEE Symposium on Logic in Computer Science (1998)Google Scholar
  14. 14.
    Sangiorgi, D.: On the bisimulation proof method. Journal of Mathematical Structures in Computer Science 8(5), 447–479 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sangiorgi, D., Milner, R.: The problem of ‘weak bisimulation up to’. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 32–46. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  16. 16.
    Sato, M., Sakurai, T., Burstall, R.M.: Explicit environments. In: Girard, J.-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 340–354. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    van Breugel, F.: A labelled transition system for π ε-calculus. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214, pp. 312–336. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Tatsuya Abe
    • 1
  1. 1.Department of Computer ScienceThe University of TokyoJapan

Personalised recommendations