MAZETTE: Multi Agent MUSETTE for Sharing and Reusing Ontologies

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3292)


During the realization of a document-mediated collective task the participants act and interact by creating documents and ontologies, by modifying them, annotating them and exchanging them. This article presents the general principles of a model based on a multi-agent architecture, aimed at facilitating the co-construction of common ontologies. The model is built on the MUSETTE (Modelling USEs and Tasks for Tracing Experience) approach, which was designed to provide users with assistance based on the recording and reusing of their system use traces. Our model, called MAZETTE (Multi-Agent MUSETTE), defines a framework for considering sharing and reusing of collective traces and experience, amongst which we focus on ontology co-construction and reuse.


Multi Agent System Multiagent System Domain Ontology Semantic Annotation Task Signature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sycara, K.P.: Multi agents Systems. AI Magazine 10(2), 79–93 (1998)Google Scholar
  2. 2.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5(2) (1993)Google Scholar
  3. 3.
    Gomez-Perez, A.: Développements récents en matière de conception, de maintenance et d’utilisation des ontologies. In: Proceedings of colloque Terminologie et intelligence artificielle de Nantes, 10-11 mai, revue terminologies nouvelles, pp. 9–20 (1999)Google Scholar
  4. 4.
    Champin, P.-A., Prié, Y., Mille, A.: MUSETTE: Modelling USEs and Tasks for Tracing Experience. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 279–286. Springer, Heidelberg (2003), CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Decker, S., Erdmann, M., Fensel, D., Studel, R.: Ontobroker: Ontology Based Access to Distributed and Semi-Structured Information. In: Meersman, R., Tari, Z., Steevens, S. (eds.) Semantic Issues in Multimedia Systems. Proceedings of DS-8, pp. 351–369. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  7. 7.
    Heflin Hendler, J., Luke, S.: SHOE: A Knowledge Representation Language for Internet Applications. Technical Report CS-TR-4078 (UMIACS TR-99-71), Department of Computer Science, University of Maryland (1999)Google Scholar
  8. 8.
    Carr, L., Bechhofer, S., Goble, C.A., Hall, W.: Conceptual Linking: Ontology-based Open Hypermedia. In: Proceedings of WWW10, Tenth World Wide Web Conference, Hong Kong (May 2001)Google Scholar
  9. 9.
    Handschuh, S., Staab, S., Maedche, A.: CREAM – Creating relational metadata with a component-based, ontology-driven annotation framework. In: Proceedings of K-CAP 2001, First International Conference on Knowledge Capture, Victoria, B.C. Canada (October 2001)Google Scholar
  10. 10.
    Handschuh, S., Staab, S., Maedche, A.: CREAting relational Metadata (CREAM) – a framekork for semantic annotation. In: Frontiers in artificial intelligence and applications, IOS Press, Amsterdam (2002)Google Scholar
  11. 11.
    Handschuh, S., Staab, S., Maedche, A.: Annotation of the shallow and the deep Web. Annotation for the Semantic Web. In: Handschuh, S., Staab, S. (eds.) Frontiers in Artifical Intelligence and Applications, vol. 96, IOS Press, Amsterdam (2003)Google Scholar
  12. 12.
    Kahan, J., Koivunen, M.-R., Prud’Hommeaux, E., Swick, R.: Annotea: An Open RDF Infrastructure for Shared Web Annotations. In: Proceedings of the Tenth International World Wide Web Conference, Hong Kong (May 2001)Google Scholar
  13. 13.
    World Wide Web Consortium. Annotea Project,
  14. 14.
    Koivunen, M.-R., Brickley, D., Kahan, J., Prud’Hommeaux, E., Swick, R.: The W3C Collaborative Web Annotation Project ... or how to have fun while building an RDF infrastructure (May 2000),
  15. 15.
    Koivunen, M.-R., Swick, R.: Collaboration through Annotations in the Semantic. Annotation for the Semantic Web. In: Handschuh, S., Staab, S. (eds.) Frontiers in Artifical Intelligence and Applications, vol. 96, IOS Press, Amsterdam (2003)Google Scholar
  16. 16.
    Martin, P., Eklund, P.: Embedding Knowledge in Web Documents. In: Proceedings of the 8th Int. World Wide Web Conf (WWW’8), Toronto, May 1999, pp. 1403–1419. Elsevier Science B.V, Amsterdam (1999)Google Scholar
  17. 17.
    Vargas-Vera, M., Motta, E., Domingue, J., Lanzoni, M., Stutt, A., Ciravegna, F.: MnM: Ontology Driven Semi-Automatic and Automatic Support for Semantic Markup. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 379–391. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Takaai, M., Takeda, H., Nishida, T.: Distributed Ontology Development Environment for Multi-Agent Systems. In: Working Notes for AAAI 1997, Spring Symp. Series on Ontological Engineering, pp. 149–153 (1997)Google Scholar
  19. 19.
    Bayardo, R., Bohrer, W., Brice, R., Cichocki, A., Fowler, J., Helal, A., Kashyap, V., Ksiezyk, T., Martin, G., Nodine, M., Rashid, M., Rusinkiewicz, M., Shea, R., Unnikrishnan, C., Unruh, A., Woelk, D.: InfoSleuth: Agent-Based Semantic Integration of Information in Open and Dynamic Environments, pp. 205–216. Morgan Kaufmann, San Francisco (1998)Google Scholar
  20. 20.
    DOGGIE: A Multiagent System for Learning Diverse Web Ontologies. In: Williams, A.B., Tsatsoulis, C.: Seventeenth National Conference on Artificial Intelligence, Austin, TX (July 2000)Google Scholar
  21. 21.
    Williams, B.A., Ren, Z.: Agents Teaching Agents to Share Meaning. In: Proc. ICMAS 2001, pp. 465–472. ACM Press, Montreal (2001)Google Scholar
  22. 22.
  23. 23.
    Fuchs, B., Mille, A.: Une modélisation au niveau connaissances de la tâche d’adaptation en raisonnement à partir de cas. In: Actes de RàPC’99, Palaiseau, Juin 1999, pp. 27–36, AFIA (1999)Google Scholar
  24. 24.
    Huvier, E.: Rapport de Travail de Fin d’Etude Atelier de maquettage pour la modélisation de l ‘expérience d’utilisation d’une application informatique. LIRIS (September 2003)Google Scholar
  25. 25.
    S20ch0r3e.i ber G., Hakkermans A., de Hoog, A.R., Shadbolt, N., Van de Welde, W., Wielinga, B.: Knowledge Engineering and Management: The CommonKADS methodology. The MIT Press (1999)Google Scholar
  26. 26.
    Laflaquière, J.: L’expérience d’utilisation d’un espace documentaire pour améliorer l’assistance à l’exploitation de l’information dans le cadre de la veille. Mémoire de DEA informatique, Université Lyon 1 (2003)Google Scholar
  27. 27.
    Stuber, A., Hassas, S., Mille, A.: Combining MAS and Experience Reuse for assisting collective task achievement. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Equipe Cognition, Expérience et Agents Situés, LIRIS FRE 2672 CNRSUniversité Claude Bernard Lyon 1Villeurbanne

Personalised recommendations