Advertisement

Querying Heterogeneous Spatial Databases: Combining an Ontology with Similarity Functions

  • Mariella Gutiérrez
  • Andrea Rodríguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3289)

Abstract

This paper uses a knowledge-based approach to querying heterogeneous spatial databases based on an ontology and conceptual and attribute similarities. The ontology, which may be independent of the databases, expands and filters a user query. Then, queries are translated into a formal specification of entity classes, which are compared against definitions in databases. This process is carried out by determining the conceptual similarity between entities in a user ontology and by comparing these entities in the ontology with entities in the conceptual models of databases. In addition, the specification of a query is done not only by identifying entity classes but also by considering constraints based on attribute values. The paper describes the system architecture and presents a case study with data from a forestry information system.

Keywords

Query Processing Semantic Relation Conceptual Schema Query Expansion Formal Ontology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arens, Y., Hsu, C.-N., Knoblock, C.: Query Preprocessing in the SIMS Information Mediator. In: Readings in Agents, pp. 82–90. Morgan Kaufmann, San Francisco (1997)Google Scholar
  2. 2.
    Bergamaschi, B., Castano, S., De Capitani di Vermercati, S., Montanari, S., Vicini, M.: An intelligent approach to information integration. In: Guarino, N. (ed.) First International Conference on Formal Ontology in Information Systems, Pisa, Italy, pp. 253–268. IOS Press, Amsterdam (1998)Google Scholar
  3. 3.
    Berner-Lee, J., Handler, J., Lassila, O.: The semantic web. Scientific American 184(5), 34–43 (2001)CrossRefGoogle Scholar
  4. 4.
    Bishr, Y.: Overcoming the semantic and other barriers to gis interoperability. Int. J. Geographical Information Science 12(4), 299–314 (1998)CrossRefGoogle Scholar
  5. 5.
    Bright, M., Hurson, A., Pakzad, S.: Automated resolution of semantic heterogeneity in multidatabases. ACM Transactions on Database Systems 19(2), 212–253 (1994)CrossRefGoogle Scholar
  6. 6.
    Fankhauser, P., Neuhold, E.: Knowledge based integration of heterogeneous databases. In: Hsiao, H., Neuhold, E., Sacks-Davis, R. (eds.) Database Semantics Conference on Interoperable Database Systems, Victoria, pp. 155–175. Elsevier Science Publishers, Amsterdam (1992)Google Scholar
  7. 7.
    Fensel, D., Musen, M.: The semantic web: A new brain for humanity. IEEE Intelligent Systems 16(1), 24–25 (2001)CrossRefGoogle Scholar
  8. 8.
    Fonseca, F., Egenhofer, M., Agouris, P., Camara, C.: Using ontologies for integrated information systems. Transactions in GIS 6(3), 231–257 (2002)CrossRefGoogle Scholar
  9. 9.
    Guarino, N.: Fornal ontology, conceptual analysis, and knowledge representation. Int. Jounal on Human Computers Studies 43, 625–640 (1995)CrossRefGoogle Scholar
  10. 10.
    Guarino, N.: Semantic Matching: Formal Ontological Distinctions for Information Organization, Extractionm and Integration. In: Information Extraction: A Multidisciplinary Approach to an Engineering Information Technology, pp. 139–170. Springer, Francasi (1997)Google Scholar
  11. 11.
    Guarino, N.: Formal Ontology in Information Systems. In: Formal Ontology in Information Systems, pp. 3–15. IOS Press, Trento (1998)Google Scholar
  12. 12.
    Rodríguez, A., Egenhofer, M.: Determining semantic similarity among entity classes from different ontologies. IEEE Transactions on Knowledge and Data Engineering 15(2), 442–456 (2003)CrossRefGoogle Scholar
  13. 13.
    Rodríguez, A., Egenhofer, M.: Comparing geospatial entity classes: An asymmetric and context dependent similarity measure. Int. Journal of Geographical Information Science 18(3), 229–256 (2004)CrossRefGoogle Scholar
  14. 14.
    Rodríguez, A., Varas, M.: A knowledge-based approach to querying heterogeneous databases. In: Hacid, M.-S., Raś, Z.W., Zighed, D.A., Kodratoff, Y. (eds.) ISMIS 2002. LNCS (LNAI), vol. 2366, pp. 213–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Horrocks, I., Patel-Schneider, P.: Three thesis of representation in the semantic web. In: Proceeding of the 12th International Conference on WWW, pp. 39–47 (2003)Google Scholar
  16. 16.
    Kashyap, V., Sheth, A.: Semantic Heterogeneity in Global Information Systems: The Role of Metadata, Context, and Ontologies. In: Cooperative Information Systems: Trends and Directions, pp. 139–178. Academic Press, London (1998)Google Scholar
  17. 17.
    Kavouras, M., Kokla, M.: A method for formalization and integration of geographic categorizations. Internationa Journal of Geographical Information Science 16(5), 439–453 (2002)CrossRefGoogle Scholar
  18. 18.
    Mena, E., Illarramendi, A.: Ontology-Based Query Processing for Global Information Systems. Kluwer Academic Publishers, Norwell (2001)Google Scholar
  19. 19.
    Mena, E., Illarramendi, A., Kashyap, V., Sheth, A.: Observer: An approach for query processing in global information systems based on interoperation across preexisting ontologies. Distributed and Parallel Databases 8(2), 223–271 (2000)CrossRefGoogle Scholar
  20. 20.
    Miller, G.: Nouns in WordNet. In: An Electronic Lexical Database, pp. 23–46. The MIT Press, Cambridge (1998)Google Scholar
  21. 21.
    Mitra, P., Wiederhold, G.: An Ontology-Composition Algebra. In: Handbook on Ontologies in Information Systems, pp. 97–119. Springer, Berlin (2003)Google Scholar
  22. 22.
    Preece, A., Hui, K.-J., Gray, W., Marti, P., Bench-Capon, T., Jones, D., Cui, Z.: The kraft architecture for knowledge fusion and transformation. Knowledge Based Systems 13(2-3), 113–120 (2000)CrossRefGoogle Scholar
  23. 23.
    Smith, J., Smith, D.: Database abstractions: Aggregations and generalizations. ACM Transactions on Database Systems 2, 105–133 (1977)CrossRefGoogle Scholar
  24. 24.
    Sowa, J.: Knowledge Representation: Logical, Philosophical and Computational Foundations, Brook/Cole, Pacific Grove, CA (2000)Google Scholar
  25. 25.
    Stuckenschmidt, H., Wache, H.: Context modelling and transformations for semantic translation. In: Bouzeghoub, M., Klusch, M., Sattler, U. (eds.) Knowledge Representation Meets Databases, Berlin, Germany, pp. 115–126 (2000)Google Scholar
  26. 26.
    Tversky, A.: Features of similarity. Psychological Review 84(4), 327–352 (1977)CrossRefGoogle Scholar
  27. 27.
    Visser, Jones, D., Bench-Capon, T., Shave, M.: Assessing Heterogeneity by Classifying Onotlogy Mitmaches. In: Formal Ontology in Information Systems, pp. 148–162. IOS Press, Trento (1998)Google Scholar
  28. 28.
    W3C. Semantic web (2001) Google Scholar
  29. 29.
    Wache, H.: Towards rule-based context transformation in mediators. In: Conrad, S., Hasselbring, H., Saake, G. (eds.) International Workshop on Engineering Federated International Systems, Khlungsborn, Germany, pp. 107–122. Infix-Verlag (1999)Google Scholar
  30. 30.
    Weinstein, P., Birmingham, P.: Comparing concepts in differentiated ontologies. In: 12th Workshop on Knowledge Adquisition, Modeling, and Management, Banff, Canada (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Mariella Gutiérrez
    • 1
  • Andrea Rodríguez
    • 2
  1. 1.School of EngineeringUniversidad Católica de la Santísima ConcepciónConcepciónChile
  2. 2.Department of Computer ScienceUniversidad de ConcepciónConcepciónChile

Personalised recommendations