Image Processing Using the Quaternion Wavelet Transform

  • Eduardo Bayro-Corrochano
  • Miguel Angel de La Torre Gomora
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3287)


The contribution of this work is to generalize the real and complex wavelet transforms and to derive for the first time a quaternionic wavelet pyramid for multi-resolution analysis using three phases. The paper can be very useful for researchers and practitioners interested in understanding and applications of the quaternion wavelet transform.


Multiresolution Analysis Quaternion Algebra Complex Wavelet Imaginary Number Phase Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bayro-Corrochano, E.: Geometric Computing for Perception Action Systems. Springer, Boston (2001)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bülow, T.: Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images. PhD. thesis, University Christian Albrechts university of Kiel (1999)Google Scholar
  3. 3.
    Chernov, V.M.: Discrete orthogonal transforms with the data representation in composition algebras. In: Scandinavian Conference on Image Analysis, Uppsala, Sweden, pp. 357–364 (1995)Google Scholar
  4. 4.
    Hamilton, W.R.: Elements of Quaternions. Longmans Green, London, Chelsea, New York (1969)Google Scholar
  5. 5.
    Magarey, J.F.A., Kingsbury, N.G.: Motion estimation using a complexvalued wavelet transform. IEEE Trans. Image Proc. 6, 549–565 (1998)Google Scholar
  6. 6.
    Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, San Diego (1998)zbMATHGoogle Scholar
  7. 7.
    Mallat, S.: A Teory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Patt. Anal. and Mach. Intell. 11(7), 674–693 (1989)zbMATHCrossRefGoogle Scholar
  8. 8.
    Mitrea, M.: Clifford Waveletes, singular Integrals and Hardy spaces. Springer, Heidelberg (1994)Google Scholar
  9. 9.
    Pan, H.-P.: Uniform full information image matching complex conjugate wavelet pyramids. In: XVIII ISPRS Congress, Viena, vol. XXXI (July 1996)Google Scholar
  10. 10.
    Traversoni, L.: Image Analysis using Quaternion Wavelet. In: Bayro Corrochano, E., Sobczyk, G. (eds.) Geometric Algebra in Science and Engineering Book. ch. 16, Springer, Heidelberg (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Eduardo Bayro-Corrochano
    • 1
  • Miguel Angel de La Torre Gomora
    • 1
  1. 1.Computer Science DepartmentGEOVIS Laboratory, Centro de Investigación y de Estudios Avanzados, CINVESTAVGuadalajaraMexico

Personalised recommendations