Landform Classification in Raster Geo-images

  • Marco Moreno
  • Serguei Levachkine
  • Miguel Torres
  • Rolando Quintero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3287)

Abstract

We present an approach to perform a landform classification of raster geo-images to obtain the semantics of DEMs. We consider the following raster layers: slope, profile curvature and plan curvature, which have been built to identify the intrinsic properties of the landscape. We use a multi-valued raster to integrate these layers. The attributes of the multi-valued raster are classified to identify the landform elements. The classification approach is used to find the terrain characteristics of the water movement. Moreover, we describe the mechanisms to compute the primary attributes of digital terrain model. The method has been implemented into Geographical Information System–ArcInfo, and applied for Tamaulipas State, Mexico.

References

  1. 1.
    Goodchild, M.: Perspective: Browsing metadata, where do we go from here? Geo. Info. Systems 10, 30–31 (2000)Google Scholar
  2. 2.
    Wharton, G.: Progress in the use of drainage network indices for rainfall-runoff modelling and runoff prediction. Progress in Physical Geography 18, 539–557 (1994)CrossRefGoogle Scholar
  3. 3.
    Moreno, M., Levachkine, S., Torres, M., Quintero, R.: Geomorphometric Analysis of Raster Image Data to detect Terrain Ruggedness and Drainage Density. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 643–650. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Molenaar, M.: An Introduction to the theory of spatial object modelling for GIS. Taylor & Francis, U.K (1998)Google Scholar
  5. 5.
    Torres, M., Moreno, M., Menchaca, R., Levachkine, S.: Making Spatial Analysis with a Distributed Geographical Information System, Series on APPLIED INFORMATICS - AI, In: International Conference on Databases and Applications (DBA 2003), International Association of Science and Technology for Development, pp. 1245-12506 (2003)Google Scholar
  6. 6.
    Burrough, P.A.: Principles of Geographical Information Systems for Land Resources Assessment. Oxford University Press, New York (1986)Google Scholar
  7. 7.
    Moore, I.D., Grayson, R.B., Landson, A.: Digital Terrain Modelling: a Review of Hydrological, Geomorphological, and Biological Applications. Hydrological Processes 5.3-30 (1999)Google Scholar
  8. 8.
    Zeverbergen, L.W., Thorne, C.R.: Quantitative Analysis of Land Surface Topography. Earth Surface Processes and Landforms 12, 47–56 (1987)CrossRefGoogle Scholar
  9. 9.
    Pennock, D.J., Zebarth, B.J., de Jong: ELandform classification and soil distribution in hummocky terrain, Sasketchewan, Canada, Geoderma, vol. 40, pp. 297–315 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Marco Moreno
    • 1
  • Serguei Levachkine
    • 1
  • Miguel Torres
    • 1
  • Rolando Quintero
    • 1
  1. 1.Geoprocessing Laboratory-Centre for Computing Research-National Polytechnic InstituteMexico CityMexico

Personalised recommendations