Estimation of High Resolution Images and Registration Parameters from Low Resolution Observations

  • Salvador Villena
  • Javier Abad
  • Rafael Molina
  • Aggelos K. Katsaggelos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3287)


In this paper we consider the problem of reconstructing a high resolution image from a set of undersampled and degraded frames, all of them obtained from high resolution images with unknown shifting displacements between them. We derive an iterative method to estimate the unknown shifts and the high resolution image given the low resolution observations. Finally, the proposed method is tested on real images.


High Resolution Image Local Correlation Global Correlation Registration Parameter Estimate Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aizawa, K., Komatsu, T., Saito, T.: A scheme for acquiring very high resolution images using multiple cameras. In: IEEE Conference on Audio, Speech and Signal Processing, vol. 3, pp. 289–292 (1992)Google Scholar
  2. 2.
    Bishop, C.M., Blake, A., Marthi, B.: Super-resolution enhancement of video. In: Bishop, C.M., Frey, B. (eds.) Proceedings Artificial Intelligence and Statistics (2003)Google Scholar
  3. 3.
    Harris, C.J., Stephens, M.: A combined corner and edge detector. In: Proceedings 4th Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  4. 4.
    Kang, M.G., Chaudhuri, S.(eds.): Super-resolution image reconstruction. IEEE Signal Processing Magazine 20(3) (2003)Google Scholar
  5. 5.
    Mateos, J., Vega, M., Molina, R., Katsaggelos, A.K.: Bayesian image estimation from an incomplete set of blurred, undersampled low resolution images. In: Perales, F.J., Campilho, A.C., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS, vol. 2652, pp. 445–452. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Molina, R., Vega, M., Abad, J., Katsaggelos, A.K.: Parameter estimation in bayesian high-resolution image reconstruction with multisensors. IEEE Trans. on Image Processing 12, 1655–1667 (2003)CrossRefGoogle Scholar
  7. 7.
    Ripley, B.D.: Spatial Statistics. John Wiley, New York (1981)zbMATHCrossRefGoogle Scholar
  8. 8.
    Stark, H., Oskoui, P.: High-resolution image recovery from image-plane arrays, using convex projections. Journal of the Optical Society A 6(11), 1715–1726 (1989)CrossRefGoogle Scholar
  9. 9.
    Tom, B.C., Galatsanos, N.P., Katsaggelos, A.K.: Reconstruction of a high resolution image from multiple low resolution images. In: Chaudhuri, S. (ed.) Super-Resolution Imaging. ch. 4, pp. 73–105. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  10. 10.
    Tom, B.C., Katsaggelos, A.K.: Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images. In: Proceedings of the IEEE International Conference on Image Processing, vol. 2, pp. 539–542 (1995)Google Scholar
  11. 11.
    Vega, M., Mateos, J., Molina, R., Katsaggelos, A.K.: Bayesian parameter estimation in image reconstruction from subsampled blurred observations. In: IEEE International Conference on Image Processing (ICIP 2003), vol. II, pp. 969–973 (2003)Google Scholar
  12. 12.
    Woods, N.A., Galatsanos, N.P., Katsaggelos, A.K.: Em-based simultaneous registration, restoration, and interpolation of super resolved images. In: Proceedings of the IEEE International Conference on Image Processing, vol. II, pp. 303–306 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Salvador Villena
    • 1
  • Javier Abad
    • 2
  • Rafael Molina
    • 2
  • Aggelos K. Katsaggelos
    • 3
  1. 1.Dpto. de Lenguajes y Sistemas InformáticosUniversidad de GranadaGranadaSpain
  2. 2.Dpto. de Ciencias de la Computación e I.A.Universidad de GranadaGranadaSpain
  3. 3.Dept. of Electrical and Computer EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations