Optimal Positioning of Sensors in 2D

  • Andrea Bottino
  • Aldo Laurentini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3287)


Locating the minimum number of sensors able to see at the same time the entire surface of an object is an important practical problem. Most work presented in this area is restricted to 2D objects. In this paper we present a sensor location algorithms with the following properties. In principle, the algorithm could be extended to 3D objects. The solution given by the algorithm converges toward the optimal solution when increasing the resolution of the object. Limitations due to real sensors can be easily taken into account.


Mobile Robot Visibility Line Edge Covering Starting Region Visible Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Scott, W.R., Roth, G.: View Planning for Automated Three-Dimensional Object Reconstruction and Inspection. ACM Computing Surveys 35(1), 64–96 (2003)CrossRefGoogle Scholar
  2. 2.
    Kazakakis, G.D., Argyros, A.A.: Fast positioning of limited visibility guards for inspection of 2D workspaces. In: Proc. Conf. On Intelligent Robots and Systems, pp. 2843–2848 (2002)Google Scholar
  3. 3.
    Laurentini, A.: Guarding the walls of an art gallery. The Visual Computer 15, 265–278 (1999)CrossRefGoogle Scholar
  4. 4.
    O’Rourke, J.: Art gallery theorems and algorithms. Oxford University Press, New York (1987)zbMATHGoogle Scholar
  5. 5.
    Shermer, T.: Recent results in art galleries. IEEE Proc. 80, 1384–1399 (1992)CrossRefGoogle Scholar
  6. 6.
    Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. John Wiley & Sons, Chichester (1988)zbMATHGoogle Scholar
  7. 7.
    Danner, T., Kavraki, L.E.: Randomized planning for short inspection paths. In: Proceedings. ICRA 2000, vol. 2, pp. 971–976 (2000)Google Scholar
  8. 8.
    Gigus, Z., Canny, J., Seidel, R.: Efficiently computing and representing aspect graphs of polyhedral objects. IEEE Trans. Patt. Anal. Machine Intell. 13, 542–551 (1991)CrossRefGoogle Scholar
  9. 9.
    Preparata, F., Shamos, M.: Computational geometry: an introduction. Springer, Heidelberg (1985)Google Scholar
  10. 10.
    Baase, S.: Computer algorithms. Addison-Wesley, Reading (1988)Google Scholar
  11. 11.
    Talluri, R., Aggarwal, J.K.: Mobile robot self-location using model-image feature correspondence. IEEE Trans. On Robotics and Automation 12(1), 63–77 (1996)CrossRefGoogle Scholar
  12. 12.
    Simsarian, K.T., Olson, T.J., Nandhakumar, N.: View-invariant regions and mobile robot self-localization. IEEE Trans. Robot. and Automat. 12(5), 810–816 (1996)CrossRefGoogle Scholar
  13. 13.
    Nemhauser, Wolsey, L.: Integer and Combinatorial Optimization, p. 466. John Wiley, Chichester (1988)zbMATHGoogle Scholar
  14. 14.
    Tarabanis, K., Tsai, R.Y., Kaul, A.: Computing occlusion-free viewpoints. IEEE Trans. Pattern Analysis and Machine Intelligence 18(3), 279–292 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Andrea Bottino
    • 1
  • Aldo Laurentini
    • 1
  1. 1.Dipartimento di Automatica e InformaticaPolitecnico di TorinoTorinoItaly

Personalised recommendations