Selection of an Automated Morphological Gradient Threshold for Image Segmentation

  • Francisco Antonio Pujol López
  • Juan Manuel García Chamizo
  • Mar Pujol López
  • Ramón Riza Aldeguer
  • M. J. Pujol
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3287)

Abstract

Segmentation is an essential part of practically any automated image recognition system, since it is necessary for further processing such as feature extraction or object recognition. There exist a variety of techniques for threshold selection, as it is a fast, simple and robust method. Threshold value will have considerable effects on the boundary position and overall size of the extracted objects. In this work, we propose an automated thresholding selection, which takes into account the local properties of a pixel. To do this, the algorithm calculates the morphological gradient and Laplacian and, afterwards, chooses a suitable threshold after estimating the lowest distance between the ideal segmentation and the morphological gradient thresholding segmentation.

References

  1. 1.
    Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognition 9, 1277–1294 (1993)CrossRefGoogle Scholar
  2. 2.
    Arques, P., Compañ, P., Molina, R., Pujol, M., Rizo, R.: A cybernetic approach to the multiscale minimization of energy function: Grey level image segmentation. Kybernetes 31, 596–608 (2002)MATHCrossRefGoogle Scholar
  3. 3.
    Arques, P., Compañ, P., Molina, R., Pujol, M., Rizo, R.: Minimization of an energy function with robust features for image segmentation. Kybernetes 32, 1481–1491 (2003)MATHCrossRefGoogle Scholar
  4. 4.
    Ouadfel, S., Batouche, M.: MRF-based image segmentation using ant colony system. Electronic Letters on Computer Vision and Image Analysis 2, 12–24 (2003)Google Scholar
  5. 5.
    Basu, M., Su, M.: Image smoothing with exponential functions. International Journal of Pattern Recognition and Artificial Intelligence 15, 735–752 (2001)CrossRefGoogle Scholar
  6. 6.
    Pujol, F., García, J.M., Fuster, A., Pujol, M., Rizo, R.: Use of mathematical morphology in real-time path planning. Kybernetes 31, 115–123 (2002)MATHCrossRefGoogle Scholar
  7. 7.
    Pujol, F., Pujol, M., Llorens, F., Rizo, R., García, J.M.: Selection of a suitable measurement to obtain a quality segmented image. In: Proc. of the 5th Iberoamerican Symposium on Pattern Recognition, Lisbon, Portugal, pp. 643–654 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Francisco Antonio Pujol López
    • 1
  • Juan Manuel García Chamizo
    • 1
  • Mar Pujol López
    • 2
  • Ramón Riza Aldeguer
    • 2
  • M. J. Pujol
    • 3
  1. 1.Depto. Tecnología Informática y ComputaciónUniversidad de AlicanteAlicanteEspaña
  2. 2.Depto. Ciencia de la Computación e Inteligencia ArtificialUniversidad de AlicanteAlicanteEspaña
  3. 3.Depto. Matemática AplicadaUniversidad de AlicanteAlicanteEspaña

Personalised recommendations