Skip to main content

Abstract

In the general overview on materials and their characteristics, outlined in chapter 3, it has been stated that materials and their characteristics result from the processing of matter. Thus, condensed matter physics is one of the fundamentals for the understanding of materials. The Monte Carlo Method, which is a powerful method in this respect, is presented in this final chapter of the Handbook's Part E on Modelling and Simulation Methods as follows:

First, the principles of this simulation technique are introduced

  • Monte Carlo Method: the fundamentals

  • Improved Monte Carlo algorithms

  • Quantum Monte Carlo Method

Second, the application of the Monte Carlo Method is explained in considering selected areas of materials science:

  • Electronic correlations: antiferromagnetism

  • Perfect conductance of electricity: superconductivity

  • Vortex states in condensed matter physics

  • Quantum critical phenomena

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

DOS:

density of states

LD:

laser diode

MD:

multichannel detector

References

  1. K. Binder, Q. W. Heermann: Monte Carlo Simulation in Statistical Physics, Springer Series in Solid-State Sciences (Springer-Verlag, Germany 1988) p. 80

    Google Scholar 

  2. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller: Equation of State Calculations by Fast Computing Machines, J. Chem. Phys. 21, 1087–1092 (1953)

    CAS  Google Scholar 

  3. A. M. Ferrenberg, D. P. Landau, Y. J. Wong: Monte Carlo simulations: Hidden errors from “good” random number generators, Phys. Rev. Lett. 69, 3382–3384 (1992)

    CAS  Google Scholar 

  4. M. Matsumoto, Y. Kurita: Twisted GFSR generators, ACM Trans. Model. Comput. Siml. 2, 179–194 (1992)

    Google Scholar 

  5. M. Matsumoto, Y. Kurita: Twisted GFSR generators II, ACM Trans. Model. Comput. Siml. 4, 254–266 (1994)

    Google Scholar 

  6. M. Matsumoto, T. Nishimura: Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator, ACM Trans. Model. Comput. Siml. 8, 3–30 (1998)

    Google Scholar 

  7. The source codes in various languages and original articles can be downloaded from the website http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/emt.html

  8. M. Suzuki: Linear and nonlinear dynamic scaling relations in the renormalization group theory, Phys. Lett. A 58, 435–436 (1976)

    Google Scholar 

  9. M. Suzuki: Static and dynamic finite-size scaling theory based on the renormalization group approach, Prog. Theor. Phys. 83, 1142–1150 (1977)

    Google Scholar 

  10. N. Ito: Non-equilibrium critical relaxation of the three-dimensional Ising model, Physica A 192, 604–616 (1993)

    Google Scholar 

  11. N. Ito, T. Matsuhisa, H. Kitatani: Ferromagnetic transition of ± J Ising spin glass model on square lattice, J. Phys. Soc. Jpn. 67, 1188–1196 (1998)

    CAS  Google Scholar 

  12. N. Ito, K. Hukushima, K. Ogawa, Y. Ozeki: Nonequilibrium relaxation of fluctuations of physical quantities, J. Phys. Soc. Jpn. 69, 1931–1934 (2000)

    CAS  Google Scholar 

  13. Z. B. Li, L. Schülke, B. Zheng: Dynamic Monte Carlo measurement of critical exponents, Phys. Rev. Lett. 74, 3396–3398 (1995)

    CAS  Google Scholar 

  14. Y. Nonomura: New quantum Monte Carlo approach to ground-state phase transitions in quantum spin systems, J. Phys. Soc. Jpn. 67, 5–7 (1998)

    CAS  Google Scholar 

  15. Y. Nonomura: New quantum Monte Carlo study of quantum critical phenomena with Trotter-number-dependent finite-size scaling and non-equilibrium relaxation, J. Phys. A 31, 7939–7954 (1998)

    Google Scholar 

  16. T. Nakamura, Y. Ito: A quantum Monte Carlo algorithm realizing an intrinsic relaxation, J. Phys. Soc. Jpn. 72, 2405–2408 (2003)

    CAS  Google Scholar 

  17. Y. Ozeki, K. Ogawa, N. Ito: Nonequilibrium relaxation analysis of Kosterlitz-Thouless phase transition, Phys. Rev. E 67, 026007(1–5) (2003)

    Google Scholar 

  18. Y. Ozeki, K. Kasono, N. Ito, S. Miyashita: Nonequilibrium relaxation analysis for first-order phase transitions, Physica A 321, 271–279 (2003)

    Google Scholar 

  19. Y. Iba: Extended ensemble Monte Carlo, Int. J. Mod. Phys. C 12, 623–656 (2001)

    Google Scholar 

  20. A. M. Ferrenberg, R. H. Swendsen: New Monte Carlo technique for studying phase transitions, Phys. Rev. Lett. 61, 2635–2638 (1988)

    CAS  Google Scholar 

  21. A. M. Ferrenberg, R. H. Swendsen: Optimized Monte Carlo data analysis, Phys. Rev. Lett. 63, 1195–1198 (1989)

    CAS  Google Scholar 

  22. A. M. Ferrenberg, D. P. Landau: Critical behavior of the three-dimensional Ising model: A high-resolution Monte Carlo study, Phys. Rev. B 44, 5081–5091 (1991)

    Google Scholar 

  23. B. A. Berg, T. Neuhaus: Multicanonical algorithms for first order phase transitions, Phys. Lett. B 267, 249–253 (1991)

    Google Scholar 

  24. B. A. Berg, T. Neuhaus: Multicanonical ensemble: A new approach to simulate first-order phase transitions, Phys. Rev. Lett. 68, 9–12 (1992)

    Google Scholar 

  25. J. Lee: New Monte Carlo algorithm: Entropic sampling, Phys. Rev. Lett. 71, 211–214 (1993)

    CAS  Google Scholar 

  26. P. M. C. de Oliveira, T. J. P. Penna, H. J. Herrmann: Broad histogram method, Braz. J. Phys. 26, 677–683 (1996)

    Google Scholar 

  27. P. M. C. de Oliveira, T. J. P. Penna, H. J. Herrmann: Broad histogram Monte Carlo, Eur. Phys. J. B 1, 205–208 (1998)

    Google Scholar 

  28. R. H. Swendsen, B. Diggs, J.-S. Wang, S.-T. Li, C. Genovese, J. B. Kadane: Transition matrix Monte Carlo, Int. J. Mod. Phys. C 10, 1563–1569 (1999)

    Google Scholar 

  29. J.-S. Wang, T. K. Tay, R. H. Swendsen: Transition matrix Monte Carlo reweighting and dynamics, Phys. Rev. Lett. 82, 476–479 (1999)

    CAS  Google Scholar 

  30. J.-S. Wang: Flat histogram Monte Carlo method, Physica A 281, 147–150 (2000)

    Google Scholar 

  31. F. Wang, D. P. Landau: Efficient, multiple-range random walk algorithm to calculate the density of states, Phys. Rev. Lett. 86, 2050–2053 (2001)

    CAS  Google Scholar 

  32. F. Wang, D. P. Landau: Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram, Phys. Rev. E 64, 1–16 (2001)

    Google Scholar 

  33. J. Lee, J. M. Kosterlitz: New numerical method to study phase transitions, Phys. Rev. Lett. 65, 137–140 (1990)

    CAS  Google Scholar 

  34. J. Lee, J. M. Kosterlitz: Finite-size scaling and Monte Carlo simulations of first-order phase transitions, Phys. Rev. B 43, 3265–3277 (1991)

    Google Scholar 

  35. R. H. Swendsen, J.-S. Wang: Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett. 58, 86–88 (1987)

    Google Scholar 

  36. P. W. Kasteleyn, C. M. Fortuin: Phase transitions in lattice systems with random local properties, J. Phys. Soc. Jpn. Suppl. 26, 11–14 (1969)

    Google Scholar 

  37. C. M. Fortuin, P. W. Kasteleyn: On the random cluster model. I: Introduction and relation to other models, Physica 57, 536–564 (1972)

    Google Scholar 

  38. U. Wolff: Collective Monte Carlo updating for spin systems, Phys. Rev. Lett. 62, 361–364 (1989)

    CAS  Google Scholar 

  39. P. Tamayo, R. C. Brower, W. Klein: Single-cluster Monte-Carlo dynamics for the Ising-model, J. Stat. Phys. 58, 1083–1094 (1990)

    Google Scholar 

  40. H. G. Evertz, G. Lana, M. Marcu: Cluster algorithm for vertex models, Phys. Rev. Lett. 70, 875–879 (1993)

    Google Scholar 

  41. J. Machta, Y. S. Choi, A. Lucke, T. Schweizer, L. V. Chayes: Invaded cluster algorithm for equilibrium critical points, Phys. Rev. Lett. 75, 2792–2795 (1995)

    CAS  Google Scholar 

  42. J. Machta, Y. S. Choi, A. Lucke, T. Schweizer, L. V. Chayes: Invaded cluster algorithm for Potts models, Phys. Rev. E 54, 1332–1345 (1996)

    CAS  Google Scholar 

  43. Y. Tomita, Y. Okabe: Probability-changing cluster algorithm for Potts models, Phys. Rev. Lett. 86, 572–575 (2001)

    CAS  Google Scholar 

  44. N. Prokof'ev, B. Svistunov: Worm algorithms for classical statistical models, Phys. Rev. Lett. 87, 160601(1–4) (2001)

    Google Scholar 

  45. F. Matsubara, T. Iyota, S. Inawashiro: Dynamical simulation of the Heisenberg spin glass in three dimensions, J. Phys. Soc. Jpn. 60, 41–44 (1991)

    CAS  Google Scholar 

  46. F. Matsubara, T. Iyota: Hybrid Monte-Carlo spin-dynamics simulation of short-range ± J Heisenberg models with and without anisotropy, Prog. Theor. Phys. 90, 471–498 (1993)

    CAS  Google Scholar 

  47. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi: Optimization by simulated annealing, Science 220, 671–680 (1983)

    CAS  Google Scholar 

  48. E. Marinari, G. Parisi: Simulated tempering: a new Monte Carlo scheme, Europhys. Lett. 19, 451–458 (1992)

    CAS  Google Scholar 

  49. W. Kerler, P. Rehberg: Simulated-tempering procedure for spin-glass simulations, Phys. Rev. E 50, 4220–4225 (1994)

    CAS  Google Scholar 

  50. K. Hukushima, K. Nemoto: Exchange Monte Carlo method and application to spin glass simulations, J. Phys. Soc. Jpn. 65, 1604–1608 (1996)

    CAS  Google Scholar 

  51. R. H. Swendsen, J.-S. Wang: Replica Monte Carlo simulation of spin-glasses, Phys. Rev. Lett. 57, 2607–2609 (1986)

    Google Scholar 

  52. J.-S. Wang, R. H. Swendsen: Replica Monte Carlo simulation (revisited), Prog. Theor. Phys. Suppl. 157, 317–323 (2005)

    Google Scholar 

  53. M. Suzuki: Quantum Monte Carlo methods in Condensed Matter Physics, ed. by M. Suzuki (World Scientific, Singapore 1993)

    Google Scholar 

  54. M. Suzuki: Relationship between d-dimensional quantal spin systems and (d+1)-dimensional Ising systems — equivalence, critical exponents and systematic approximants of the partition function and spin correlations —, Prog. Theor. Phys. 56, 1454–1469 (1976)

    Google Scholar 

  55. M. Suzuki: Generalized Trotters formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems, Comm. Math. Phys. 51, 183–190 (1976)

    Google Scholar 

  56. M. Suzuki: General theory of higher-order decomposition of exponential operators and symplectic integrators, Phys. Lett. A 165, 387–395 (1992)

    Google Scholar 

  57. M. Suzuki: General nonsymmetric higher-order decomposition of exponential operators and symplectic integrators, J. Phys. Soc. Jpn. 61, 3015–3019 (1992)

    Google Scholar 

  58. J. E. Hirsch, R. L. Sugar, D. J. Scalapino, R. Blankenbecler: Monte Carlo simulations of one-dimensional fermion systems, Phys. Rev. B 26, 5033–5055 (1982)

    CAS  Google Scholar 

  59. H. De Raedt, A. Lagendijk: Monte-Carlo simulation of quantum statistical lattice models, Phys. Report 127, 233–307 (1985)

    Google Scholar 

  60. M. Suzuki: Quantum Monte Carlo Methods in Equilibrium and Nonequilibrium Systems, ed. by M. Suzuki (Springer, Berlin, Heidelberg 1987)

    Google Scholar 

  61. M. Suzuki, S. Miyashita, A. Kuroda: Monte Carlo simulation of quantum spin systems I., Prog. Theor. Phys. 58, 1377–1387 (1977)

    CAS  Google Scholar 

  62. T. Sakaguchi, K. Kubo, S. Takada: Monte Carlo simulation for the in-plane susceptibility of 1D spin 1/2 and 1 XY model, J. Phys. Soc. Jpn. 54, 861–864 (1985)

    Google Scholar 

  63. S. Miyashita: Thermodynamic properties of spin 1/2 antiferromagnetic Heisenberg model on the square lattice, J. Phys. Soc. Jpn. 57, 1934–1946 (1988)

    Google Scholar 

  64. M. Suzuki: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, Phys. Lett. A 146, 319–323 (1990)

    Google Scholar 

  65. M. Suzuki: General theory of fractal path integrals with applications to many-body theories and statistical physics, J. Math. Phys. 32, 400–407 (1991)

    Google Scholar 

  66. H. G. Evertz: The loop algorithm, Adv. in Phys. 52, 1–66 (2003)

    Google Scholar 

  67. N. Kawashima, K. Harada: Recent developments of world-line Monte Carlo methods, J. Phys. Soc. Jpn. 73, 1379–1414 (2004)

    CAS  Google Scholar 

  68. N. Kawashima, J. E. Gubernatis: Dual Monte Carlo and cluster algorithms, Phys. Rev. E 51, 1547–1559 (1995)

    CAS  Google Scholar 

  69. N. Kawashima, J. E. Gubernatis: Generalization of the Fortuin-Kasteleyn transformation and its application to quantum spin simulations, J. Stat. Phys. 80, 169–221 (1995)

    Google Scholar 

  70. N. Kawashima: Cluster algorithms for anisotropic quantum spin models, J. Stat. Phys. 82, 131–153 (1996)

    Google Scholar 

  71. N. Kawashima, J. E Gubernatis, H. G. Evertz: Loop algorithms for quantum simulations of fermion models on lattices, Phys. Rev. B 50, 136–149 (1994)

    CAS  Google Scholar 

  72. B. B. Beard, U.-J. Wiese: Simulations of discrete quantum systems in continuous Euclidean time, Phys. Rev. Lett. 77, 5130–5133 (1996)

    CAS  Google Scholar 

  73. N. Kawashima, J. E. Gubernatis: Loop algorithms for Monte Carlo simulations of quantum spin systems, Phys. Rev. Lett. 73, 1295–1298 (1994)

    CAS  Google Scholar 

  74. S. Todo, K. Kato: Cluster algorithms for general-S quantum spin systems, Phys. Rev. Lett. 87, 047203(1–4) (2001)

    Google Scholar 

  75. V. A. Kashurnikov, N. V. Prokofev, B. V. Svistunov, M. Troyer: Quantum spin chains in a magnetic field, Phys. Rev. B 59, 1162–1167 (1999)

    CAS  Google Scholar 

  76. N. V. Prokov'ev, B. V. Svistunov, I. S. Tupitsyn: Exact, complete, and universal continuous-time worldline Monte Carlo approach to the statistics of discrete quantum systems, Sov. Phys. JETP 87, 310–321 (1998)

    Google Scholar 

  77. N. V. Prokof'ev, B. V. Svistunov, I. S. Tupitsyn: “Worm” algorithm in quantum Monte Carlo simulations, Phys. Lett. A 238, 253–257 (1998)

    Google Scholar 

  78. O.F. Syljuåsen, A. W. Sandvik: Quantum Monte Carlo with directed loops, Phys. Rev. E 66, 046701(1–28) (2002)

    Google Scholar 

  79. A. W. Sandvik, J. Kurkijärvi: Quantum Monte Carlo simulation method for spin systems, Phys. Rev. B 43, 5950–5961 (1991)

    Google Scholar 

  80. A. W. Sandvik: Generalization of Handscomb's quantum Monte-Carlo scheme - application to the 1D Hubbard-model, J. Phys. A 25, 3667–3682 (1992)

    Google Scholar 

  81. A. W. Sandvik: Finite-size scaling of the ground-state parameters of the two-dimensional Heisenberg model, Phys. Rev. B 56, 11678–11690 (1997)

    CAS  Google Scholar 

  82. A. W. Sandvik: Stochastic series expansion method with operator-loop update, Phys. Rev. B 59, R14157–R14160 (1999)

    CAS  Google Scholar 

  83. J. E. Hirsch: Monte Carlo study of the two-dimensional Hubbard model, Phys. Rev. Lett. 51, 1900–1903 (1983)

    Google Scholar 

  84. J. E. Hirsch: Two-dimensional Hubbard model: numerical simulation study, Phys. Rev. B 31, 4403–4419 (1985)

    Google Scholar 

  85. S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gubernatis, R. T. Scalettar: Numerical study of the two-dimensional Hubbard model, Phys. Rev. B 40, 506–516 (1989)

    Google Scholar 

  86. M. Imada, Y. Hatsugai: Numerical studies on the Hubbard model and the t-J model in one- and two-dimensions, J. Phys. Soc. Jpn. 58, 3752–3780 (1989)

    CAS  Google Scholar 

  87. J. E. Hirsch: Discrete Hubbard-Stratonovich transformation for fermion lattice models, Phys. Rev. B 28, 4059–4061 (1983)

    Google Scholar 

  88. J. Kuti: Stochastic method for the numerical study of lattice fermions, Phys. Rev. Lett. 49, 183–186 (1982)

    CAS  Google Scholar 

  89. R. Blankenbecler, R. L. Sugar: Projector Monte Carlo method, Phys. Rev. D 27, 1304–1311 (1983)

    CAS  Google Scholar 

  90. Y. C. Chen, T. K. Lee: t-J model studied by the power Lanczos method, Phys. Rev. B 51, 6723–6726 (1995)

    CAS  Google Scholar 

  91. S. Sorella: Green function Monte Carlo with stochastic reconfiguration, Phys. Rev. Lett. 80, 4558–4561 (1998)

    CAS  Google Scholar 

  92. S. Sorella, L. Capriotti: Phys. Rev. B 61, 2599–2612 (2000)

    CAS  Google Scholar 

  93. S. Sorella: Generalized Lanczos algorithm for variational quantum Monte Carlo, Phys. Rev. B 64, 024512(1–16) (2001)

    Google Scholar 

  94. H. J. M. van Bemmel, D.F.B. ten Haaf, W. van Saarloos, J. M. J. van Leeuwen, G. An: Fixed-node quantum Monte Carlo method for lattice fermions, Phys. Rev. Lett. 72, 2442–2445 (1994)

    Google Scholar 

  95. D.F.B. ten Haaf, H. J. M. van Bemmel, J. M. J. van Leeuwen, W. van Saarloos, D. M. Ceperley: Proof for an upper bound in fixed-node Monte Carlo for lattice fermions, Phys. Rev. B 51, 13039–13045 (1995)

    Google Scholar 

  96. D. M. Ceperley, B. J. Alder: Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45, 566–569 (1980)

    CAS  Google Scholar 

  97. D. M. Ceperley, B. J. Alder: Quantum Monte-Carlo, Science 231, 555–560 (1986)

    CAS  Google Scholar 

  98. T. Nakamura: Vanishing of the negative-sign problem of quantum Monte Carlo simulations in one-dimensional frustrated spin systems, Phys. Rev. B 57, R3197–R3200 (1998)

    CAS  Google Scholar 

  99. S. Chandrasekharan, U.-J. Wiese: Meron-cluster solution of fermion sign problems, Phys. Rev. Lett. 83, 3116–3119 (1999)

    CAS  Google Scholar 

  100. S. Chandrasekharan, J. Cox, J. C. Osborn, U.-J. Wiese: Meron-cluster approach to systems of strongly correlated electrons, Nucl. Phys. B 673, 405–436 (2003)

    Google Scholar 

  101. C. Domb, M. S. Green: Phase Transitions and Critical Phenomena, Vol. 3, ed. by C. Domb, M. S. Green (Academic Press, London 1974)

    Google Scholar 

  102. G. A. Baker, Jr.: Quantitative Theory of Critical Phenomena, ed. by G. A. Baker, Jr. (Academic Press, San Diego 1990)

    Google Scholar 

  103. S. R. White: Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863–2866 (1992)

    Google Scholar 

  104. S. R. White: Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B 48, 10345–10356 (1993)

    CAS  Google Scholar 

  105. T. Nishino: Density matrix renormalization group method for 2D classical models, J. Phys. Soc. Jpn. 64, 3598–3601 (1995)

    CAS  Google Scholar 

  106. R. J. Bursill, T. Xiang, G. A. Gehring: The density matrix renormalization group for a quantum spin chain at non-zero temperature, J. Phys.: Condns. Matter 8, L583–L590 (1996)

    CAS  Google Scholar 

  107. N. Shibata: Thermodynamics of the anisotropic Heisenberg chain calculated by the density matrix renormalization group method, J. Phys. Soc. Jpn. 66, 2221–2223 (1997)

    CAS  Google Scholar 

  108. X. Wang, T. Xiang: Transfer-matrix density-matrix renormalization-group theory for thermodynamics of one-dimensional quantum systems, Phys. Rev. B 56, 5061–5064 (1997)

    CAS  Google Scholar 

  109. K. Maisinger, U. Schollwöck: Thermodynamics of frustrated quantum spin chains, Phys. Rev. Lett. 81, 445–448 (1998)

    CAS  Google Scholar 

  110. M. Imada, T. Kashima: Path-integral renormalization group method for numerical study of strongly correlated electron systems, J. Phys. Soc. Jpn. 69, 2723–2726 (2000)

    CAS  Google Scholar 

  111. T. Kashima, M. Imada: Path-integral renormalization group method for numerical study on ground states of strongly correlated electronic systems, J. Phys. Soc. Jpn. 70, 2287–2299 (2001)

    CAS  Google Scholar 

  112. M. Imada, T. Mizusaki: Quantum-number projection in the path-integral renormalization group method, Phys. Rev. B 69, 125110(1–10) (2004)

    Google Scholar 

  113. T. Kashima, M. Imada: Magnetic and metal-insulator transitions through bandwidth control in two-dimensional Hubbard models with nearest and next-nearest neighbor transfers, J. Phys. Soc. Jpn. 70, 3052–3067 (2001)

    CAS  Google Scholar 

  114. H. Morita, S Watanabe, M. Imada: Nonmagnetic insulating states near the Mott transitions on lattices with geometrical frustration and implications for κ-(ET)2Cu2(CN)3, J. Phys. Soc. Jpn. 71, 2109–2112 (2002)

    CAS  Google Scholar 

  115. S. Watanabe, M. Imada: Precise determination of phase diagram for two-dimensional Hubbard model with filling- and bandwidth-control Mott transitions: grand-canonical path-integral renormalization group approach, J. Phys. Soc. Jpn. 73, 1251–1266 (2004)

    CAS  Google Scholar 

  116. S.-C. Zhang: A Unified Theory Based on SO(5) Symmetry of Superconductivity and Antiferromagnetism, Science 275, 1089–1096 (1997)

    CAS  Google Scholar 

  117. E. Demler, W. Hanke, S.-C. Zhang: SO(5) theory of antiferromagnetism and superconductivity, Rev. Mod. Phys. 76, 909–974 (2004)

    CAS  Google Scholar 

  118. K.-S. Liu, M. E. Fisher, D. R. Nelson: Quantum Lattice Gas and the Existence of a Supersolid, J. Low. Temp. Phys. 10, 655–683 (1973)

    CAS  Google Scholar 

  119. M. E. Fisher, D. R. Nelson: Spin Flop, Supersolids, and Bicritical and Tetracritical Points, Phys. Rev. Lett. 32, 1350–1353 (1974)

    Google Scholar 

  120. D. R. Nelson, J. M. Kosterlitz, M. E. Fisher: Renormalization-Group Analysis of Bicritical and Tetracritical Points, Phys. Rev. Lett. 33, 813–817 (1974)

    CAS  Google Scholar 

  121. D. R. Nelson, M. E. Fisher, J. M. Kosterlitz: Bicritical and tetracritical points in anisotropic antiferromagnetic systems, Phys. Rev. B 13, 412–432 (1976)

    Google Scholar 

  122. A. Aharony: Comment on “ ”Bicritical and Tetracritical Phenomena and Scaling Properties of the SO(5) Theory, Phys. Rev. Lett. 88, 059703(1) (2002), and references therein

    Google Scholar 

  123. X. Hu: Bicritical and Tetracritical Phenomena and Scaling Properties of the SO(5) Theory, Phys. Rev. Lett. 87 (2001)

    Google Scholar 

  124. X. Hu: Bicritical phenomena and scalingproperties of O(5) model, Physica A 321, 71–80 (2003)

    Google Scholar 

  125. E. Arrigoni, W. Hanke: Renormalized SO(5) Symmetry in Ladders with Next-Nearest-Neighbor Hopping, Phys. Rev. Lett. 82, 2115–2118 (1999)

    CAS  Google Scholar 

  126. E. Arrigoni, W. Hanke: Critical properties of projected SO(5) models at finite temperatures, Phys. Rev. B 62, 11770–11777 (2000)

    CAS  Google Scholar 

  127. X. Hu: Reply to “Comment on ‘Bicritical and tetracritical phenomena and scaling properties of the SO(5) theory’”, Phys. Rev. Lett. 88, 059704(1–4) (2002)

    Google Scholar 

  128. P. Pfeuty, D. Jasnow, M. E. Fisher: Crossover scaling functions for exchange anisotropy, Phys. Rev. B 10, 2088–2112 (1974)

    Google Scholar 

  129. X. Hu, T. Koyama, M. Tachiki: Phase Diagram of a Superconducting and Antiferromagnetic System with SO(5) Symmetry, Phys. Rev. Lett. 82, 2568–2571 (1999)

    CAS  Google Scholar 

  130. A. A. Abrikosov: On the magnetic properties of superconductors of the second group, Zh. Eksp. Teor. Fiz. 32, 1442 (1957)

    Google Scholar 

  131. A. A. Abrikosov: On the magnetic properties of superconductors of the second group, Sov. Phys. JETP 5, 1174–1182 (1957)

    Google Scholar 

  132. G. Blatter, M. V. Feigelman, V. B. Geshkenbein, A. I. Larkin, V. M. Vinokur: Vortices in high-temperature superconductors, Rev. Mod. Phys. 66, 1125–1388 (1994)

    CAS  Google Scholar 

  133. G. W. Crabtree, D. R. Nelson: Vortex Physics in High-Temperature Superconductors, Physics Today 50, 38–45 (1997)

    CAS  Google Scholar 

  134. T. Nattermann, S. Scheidl: Vortex-glass phases in type-II superconductors, Adv. Phys. 49, 607–704 (2000)

    CAS  Google Scholar 

  135. E. Brezin, D. R. Nelson, A. Thiaville: Fluctuation effects near H c2 in type-II superconductors, Phys. Rev. B 31, 7124–7132 (1985)

    CAS  Google Scholar 

  136. Y.-H. Li, S. Teitel: Vortex-line-lattice melting, vortex-line cutting, and entanglement in model high-T c superconductors, Phys. Rev. Lett. 66, 3301–3304 (1991)

    Google Scholar 

  137. R. E. Hetzel, A. Sudbø, D. A. Huse: First-order melting transition of an Abrikosov vortex lattice, Phys. Rev. Lett. 69, 518–521 (1992)

    CAS  Google Scholar 

  138. P. G. de Gennes: Superconductivity of Metals and Alloys (Addison-Wesley, Redwood City, CA 1966) translated by P. A. Pincus

    Google Scholar 

  139. W. E. Lawrence, S. Doniach: Proceedings of LT12, Tokyo, 1970, ed. by E. Kanda (Keigaku, Tokyo 1971)

    Google Scholar 

  140. X. Hu, S. Miyashita, M. Tachiki: Simulation for the first-order vortex-lattice melting transition in high-T c superconductors, Physica (Amsterdam) 282-287C, 2057–2058 (1997)

    Google Scholar 

  141. X. Hu, S. Miyashita, M. Tachiki: δ-Function Peak in the Specific Heat of High-Tc Superconductors: Monte Carlo Simulation, Phys.Rev. Lett. 79, 3498–3501 (1997)

    CAS  Google Scholar 

  142. X. Hu, S. Miyashita, M. Tachiki: Monte Carlo simulation on the first-order melting transition of high-T c superconductors in ĉ, Phys. Rev. B 58, 3438–3445 (1998)

    CAS  Google Scholar 

  143. S. Miyashita, H. Nishimori, A. Kuroda, M. Suzuki: Monte Carlo Simulation and Static and Dynamic Critical Behavior of the Plane Rotator Model, Prog. Theo. Phys. 60, 1669–1685 (1978)

    Google Scholar 

  144. A. E. Koshelev: Point-like and line-like melting of the vortex lattice in the universal phase diagram of layered superconductors, Phys. Rev. B 56, 11201–11212 (1997)

    CAS  Google Scholar 

  145. A. K. Nguyen, A. Sudbø: Phase coherence and the boson analogy of vortex liquids, Phys. Rev. B 58, 2802–2815 (1998)

    Google Scholar 

  146. P. Olsson, S. Teitel: Correlation Lengths in the Vortex Line Liquid of a High-T c Superconductor, Phys. Rev. Lett. 82, 2183–2186 (1999)

    CAS  Google Scholar 

  147. X. Hu, M. Tachiki: Possible Tricritical Point in Phase Diagrams of Interlayer Josephson-Vortex Systems in High-T c Superconductors, Phys. Rev. Lett. 85, 2577–2580 (2000)

    CAS  Google Scholar 

  148. K. B. Efetov: Fluctuations in layered superconductors in a parallel magnetic field, Sov. Phys. JETP 49, 905–910 (1979)

    Google Scholar 

  149. B. I. Ivlev, N. B. Kopnin, m. m. Slomaa: Vortex-lattice/vortex-liquid states in anisotropic high-T c superconductor, Phys. Rev. B 43, 2896–2902 (1991)

    Google Scholar 

  150. B. I. Ivlev, N. B. Kopnin, V. L. Pokrovsky: Shear instability of a vortex lattice in layered superconductors, J. Low Temp. Phys. 80, 187 (1990)

    CAS  Google Scholar 

  151. L. V. Mikheev, E. B. Kolomeisky: Melting of a flux-line fluid confined by CuO2 planes: Lindemann-criterion failure, Phys. Rev. B 43, 10431–10435 (1991)

    Google Scholar 

  152. S. E. Korshunov, A. I. Larkin: Problem of Josephson-vortex- lattice melting in layered superconductors, Phys. Rev. B 46, 6395–6399 (1992)

    Google Scholar 

  153. G. Blatte, B. I. Ivlev, J. Rhyner: Kosterlitz-Thouless transition in the smectic vortex state of a layered superconductor, Phys. Rev. Lett. 66, 2392–2395 (1991)

    Google Scholar 

  154. L. Balents, D. R. Nelson: Fluctuations and Intrinsic Pinning in Layered Superconductors, Phys. Rev. Lett. 73, 2618–2621 (1994)

    CAS  Google Scholar 

  155. L. Balents, D. R. Nelson: Quantum smectic and supersolid order in helium films and vortex arrays, Phys. Rev. B 52, 12951–12968 (1995)

    CAS  Google Scholar 

  156. Y. Iye, S. Nakamura, T. Tamegai: Absence of Current Direction Dependence of The Resistive State of High Temperature Superconductors in Magnetic Fields, Physica 159C, 433–438 (1989)

    Google Scholar 

  157. W. K. Kwok, U. Welp, G. W. Crabtree, K. G. Vandervoort, R. Hulscher, J. Z. Liu: Direct observation of dissipative flux motion and pinning by twin boundaries in YBa2Cu3O7−δ single crystals, Phys. Rev. Lett. 64, 966–969 (1990)

    CAS  Google Scholar 

  158. W. K. Kwok, J. Fendrich, U. Welp, S. Fleshler, J. Downey, G. W. Crabtree: Suppression of the first order vortex melting transition by intrinsic pinning in YBa2Cu3O7−δ , Phys. Rev. Lett. 72, 1088–1091 (1994)

    Google Scholar 

  159. X. Hu, M. Tachiki: Decoupled two-dimensional superconductivity and continuous melting transitions in layered superconductors immersed in a parallel magnetic field, Phys. Rev. B 70, 064506(1–13) (2004)

    Google Scholar 

  160. X. Hu, M. Tachiki: Structure and Phase Transition of Josephson Vortices in Anisotropic High-T c Superconductors, Phys. Rev. Lett. 80, 4044–4047 (1998)

    CAS  Google Scholar 

  161. X. Hu: Pinning Effects in Vortex States of High-T c Superconductors: Monte Carlo Simulations, J. Low. Temp. Phys. 131, 979–986 (2003)

    CAS  Google Scholar 

  162. X. Hu, M.-B. Luo, Y.-Q. Ma: Density functional theory for freezing transition of vortex-line liquid with periodic layer pinning, Phys. Rev. B 72, 174503(1–6) (2005)

    Google Scholar 

  163. A. I. Larkin: Effect of inhomogeneities on the structure of the mixed state of superconductors, Sov. Phys. JETP 31, 784–786 (1970)

    Google Scholar 

  164. A. I. Larkin, Y. N. Ovchinnikov: Pinning in type II superconductors, J. Low Temp. Phys. 34, 409–428 (1979)

    Google Scholar 

  165. Y. Imry, S.-K. Ma: Random-field instability of the ordered state of continuous symmetry, Phys. Rev. Lett. 35, 1399–1401 (1975)

    CAS  Google Scholar 

  166. T. Nattermann: Scaling approach to pinning: Charge density waves and giant flux creep in superconductors, Phys. Rev. Lett. 64, 2454–2457 (1990)

    Google Scholar 

  167. S. E. Korshunov: Replica symmetry breaking in vortex glasses, Phys. Rev. B 48, 3969–3975 (1993)

    CAS  Google Scholar 

  168. T. Giamarchi, P. Le Doussal: Elastic theory of pinned flux lattices, Phys. Rev. Lett. 72, 1530–1533 (1994)

    Google Scholar 

  169. T. Giamarchi, P. Le Doussal: Elastic theory of flux lattices in the presence of weak disorder, Phys. Rev. B 52, 1242–1270 (1995)

    CAS  Google Scholar 

  170. T. Giamarchi, P. Le Doussal: Phase diagrams of flux lattices with disorder, Phys. Rev. B 55, 6577–6583 (1997)

    CAS  Google Scholar 

  171. P. Olsson, S. Teitel: Disorder driven melting of the vortex line lattice, Phys. Rev. Lett. 87, 137001(1–4) (2001)

    Google Scholar 

  172. Y. Nonomura, X. Hu: Effects of point defects on the phase diagram of vortex states in high− T c superconductors in the B ∥ c cxis, Phys. Rev. Lett. 86, 5140–5143 (2001)

    CAS  Google Scholar 

  173. Y. Nonomura, X. Hu: Crossover behaviors in liquid region of vortex states above a critical point caused by point defects, cond-mat/0302597

    Google Scholar 

  174. Y. Nonomura, X. Hu: Possible Bragg-Bose glass phase in vortex states of high-T c superconductors with sparse and weak columnar defects, Europhys. Lett. 65, 533–539 (2004)

    CAS  Google Scholar 

  175. M. J. P. Gingras, D. A. Huse: Topological defects in the random-field XY model and the pinned vortex lattice to vortex glass transition in type-II superconductors, Phys. Rev. B 53, 15193–15200 (1996)

    CAS  Google Scholar 

  176. S. Ryu, A. Kapitulnik, S. Doniach: Field-driven topological glass transition in a model flux line lattice, Phys. Rev. Lett. 77, 2300–2303 (1996)

    CAS  Google Scholar 

  177. M. P. A. Fisher: Vortex-glass superconductivity: A possible new phase in bulk high-T c oxides, Phys. Rev. Lett. 62, 1415–1418 (1989)

    CAS  Google Scholar 

  178. M. P. A. Fisher, D. S. Fisher, D. A. Huse: Thermal fluctuations, quenched disorder, phase transitions, and transport in type-II superconductors, Phys. Rev. B 43, 130–159 (1991)

    Google Scholar 

  179. A. van Otterlo, R. T. Scalettar: Phase diagram of disordered vortices from London Langevin simulations, Phys. Rev. Lett. 81, 1497–1500 (1998)

    Google Scholar 

  180. R. Sugano, T. Onogi, K. Hirata, M. Tachiki: The effect of pointlike pinning on vortex phase diagram of Bi2Sr2CaCu2O8+δ , Physica C 357-360, 428–431 (2001), and references therein

    CAS  Google Scholar 

  181. A. Vestergren, J. Lidmar, M. Wallin: Vortex glass transition in a random pinning model, Phys. Rev. Lett. 88, 117004(1–4) (2002)

    Google Scholar 

  182. P. Olsson: Vortex glass transition in a frustrated 3D XY model with disorder, Phys. Rev. Lett. 91, 077002(1–4) (2003)

    Google Scholar 

  183. J. Lidmar: Amorphous vortex glass phase in strongly disordered superconductors, Phys. Rev. Lett. 91, 097001(1–4) (2003)

    Google Scholar 

  184. F. O. Pfeiffer, H. Rieger: Numerical study of the strongly screened vortex-glass model in an external field, Phys. Rev. B 60, 6304–6307 (1999)

    CAS  Google Scholar 

  185. H. Kawamura: Simulation studies on the stability of the vortex-glass order, J. Phys. Soc. Jpn. 69, 29–32 (2000)

    CAS  Google Scholar 

  186. T. K. Worthington, M. P. A. Fisher, D. A. Huse, J. Toner, A. D. Marwick, T. Zabel, C. A. Feild, F. Holtzberg: Phys. Rev. B 46, 11854–11861 (1992)

    CAS  Google Scholar 

  187. T. Nishizaki, K. Shibata, T. Sasaki, N. Kobayashi: New equilibrium phase diagram of YBa2Cu3O y under high magnetic fields, Physica C 341-348, 957–960 (2000)

    CAS  Google Scholar 

  188. K. Shibata, T. Nishizaki, T. Sasaki, N. Kobayashi: Phase transition in the vortex liquid and the critical endpoint in YBa2Cu3O y , Phys. Rev. B 66, 214518(1–7) (2002)

    Google Scholar 

  189. J. Kierfeld, V. Vinokur: Dislocations and the critical endpoint of the melting line of vortex line lattices, Phys. Rev. B 61, R14928–14931 (2000)

    CAS  Google Scholar 

  190. G. P. Mikitik, E. H. Brandt: Effect of pinning on the vortex-lattice melting line in type-II superconductors, Phys. Rev. B 68, 054509(1–15) (2003)

    Google Scholar 

  191. F. Bouquet, C. Marcenat, E. Steep, R. Calemczuk, W. K. Kwok, U. Welp, G. W. Crabtree, R. A. Fisher, N. E. Phillips, A. Schilling: An unusual phase transition to a second liquid vortex phase in the superconductor YBa2Cu3O7, Nature 411, 448–451 (2001)

    CAS  Google Scholar 

  192. M. P. A. Fisher, P. B. Weichman, G. Grinstein, D. S. Fisher: Boson localization and the superfluid-insulator transition, Phys. Rev. B 40, 546–570 (1989)

    Google Scholar 

  193. D. R. Nelson, V. M. Vinokur: Boson localization and pinning by correlated disorder in high-temperature superconductors, Phys. Rev. Lett. 68, 2398–2401 (1992)

    CAS  Google Scholar 

  194. D. R. Nelson, V. M. Vinokur: Boson localization and correlated pinning of superconducting vortex arrays, Phys. Rev. B 48, 13060–13097 (1993)

    CAS  Google Scholar 

  195. J. Lidmar, M. Wallin: Critical properties of Bose-glass superconductors, Europhys. Lett. 47, 494–500 (1999)

    CAS  Google Scholar 

  196. L. Radzihovsky: Resurrection of the melting line in the Bose glass superconductor, Phys. Rev. Lett. 74, 4923–4926 (1995)

    CAS  Google Scholar 

  197. T. Giamarchi, P. Le Doussal: Variational theory of elastic manifolds with correlated disorder and localization of interacting quantum particles, Phys. Rev. B 53, 15206–15225 (1996)

    CAS  Google Scholar 

  198. C. Zeng, P. L. Leath, D. S. Fisher: Absence of two-dimensional Bragg glasses, Phys. Rev. Lett. 82, 1935–1938 (1999)

    CAS  Google Scholar 

  199. S. Tyagi, Y. Y. Goldschmidt: Effects of columnar disorder on flux-lattice melting in high-temperature superconductors, Phys. Rev. B 67, 214501(1–15) (2003)

    Google Scholar 

  200. C. Dasgupta, O. T. Valls: Two-step melting of the vortex solid in layered superconductors with random columnar pins, Phys. Rev. Lett. 91, 127002(1–4) (2003)

    Google Scholar 

  201. C. Dasgupta, O. T. Valls: Melting and structure of the vortex solid in strongly anisotropic layered superconductors with random columnar pins, Phys. Rev. B 69, 214520(1–16) (2004)

    Google Scholar 

  202. M. Kohno, M. Takahashi, M. Hagiwara: Low-temperature properties of the spin-1 antiferromagnetic Heisenberg chain with bond alternation, Phys. Rev. B 57, 1046–1051 (1998)

    CAS  Google Scholar 

  203. F. D. M. Haldane: Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state, Phys. Rev. Lett. 50, 1153–1156 (1983)

    Google Scholar 

  204. F. D. M. Haldane: Continuum dynamics of the 1-D Heisenberg antiferromagnet: identification with the O(3) nonlinear sigma model, Phys. Lett. A 93, 464–468 (1983)

    Google Scholar 

  205. M. P. Nightingale, H. W. Blöte: Gap of the linear spin-1 Heisenberg antiferromagnet: a Monte Carlo calculation, Phys. Rev. B 33, 659–661 (1986)

    CAS  Google Scholar 

  206. M. Takahashi: Spin-correlation function of the S = 1 antiferromagnetic Heisenberg chain at T = 0, Phys. Rev. B 38, 5188–5191 (1988)

    Google Scholar 

  207. Y. Kato, A. Tanaka: Numerical study of the S = 1 antiferromagnetic spin chain with bond alternation, J. Phys. Soc. Jpn. 63, 1277–1280 (1994)

    CAS  Google Scholar 

  208. W. J. L. Buyers, R. M. Morra, R. L. Armstrong, M. J. Hogan, P. Gerlach, K. Hirakawa: Experimental evidence for the Haldane gap in a spin-1 nearly isotropic, antiferromagnetic chain, Phys. Rev. Lett. 56, 371–374 (1986)

    CAS  Google Scholar 

  209. M. Steiner, K. Kakurai, J. K. Kjems, D. Petitgrand, R. Pynn: Inelastic neutron scattering studies on 1D near-Heisenberg antiferromagnets: a test of the Haldane conjecture, J. Appl. Phys. 61, 3953–3955 (1987)

    CAS  Google Scholar 

  210. I. A. Zaliznyak, L. P. Regnault, D. Petitgrand: Neutron-scattering study of the dynamic spin correlations in CsNiCl3 above Néel ordering, Phys. Rev. B 50, 15824–15833 (1994)

    CAS  Google Scholar 

  211. J. P. Renard, M. Verdaguer, L. P. Regnault, W. A. C. Erkelens, J. Rossat-Mignod, W. G. Stirling: Presumption for a quantum energy-gap in the quasi one-dimensional S = 1 Heisenberg-antiferromagnet Ni(C2H8N2)2NO2(ClO4), Europhys. Lett. 3, 945–951 (1987)

    CAS  Google Scholar 

  212. I. Affleck: The quantum Hall-effects, σ-models at θ=π and quantum spin chains, Nucl. Phys. B 257, 397–406 (1985)

    Google Scholar 

  213. I. Affleck: Exact critical exponents for quantum spin chains, nonlinear σ-models at θ=π and the quantum Hall-effect, Nucl. Phys. B 265, 409–447 (1986)

    Google Scholar 

  214. I. Affleck, F. D. M.  Haldane: Critical theory of quantum spin chains, Phys. Rev. B 36, 5291–5300 (1987)

    Google Scholar 

  215. E. Coronado, M. Drillon, A. Fuertes, D. Beltran, A. Mosset, J. Galy: Structural and magnetic study of Ni2(EDTA)(H2O)4,2H2O - alternating Landé factors in a two-sublattice 1D system, J. Am. Chem. Soc. 108, 900–905 (1986)

    CAS  Google Scholar 

  216. R. Vicente, A. Escuer, J. Ribas, X. Solans: The first nickel(II) alternating chain with two different end-to-end azido bridges, Inorg. Chem. 31, 1726–1728 (1992)

    CAS  Google Scholar 

  217. A. Escuer, R. Vicente, J. Ribas, M. S. E. Fallah, X. Solans, M. Font-Badría: Crystal structure and magnetic properties of trans-[Ni(333-tet)(μ-N3)] n (ClO4) n and cis-[Ni(333-tet)(μ-(N3))] n (PF6) n : two novel kinds of structural nickel(II) chains with a single azido bridge. Magnetic behavior of an alternating S=1 chain with α=0.46, Inorg. Chem. 33, 1842–1847 (1994)

    CAS  Google Scholar 

  218. J. J. Borrás-Almenar, E. Coronado, J. Curely, R. Georges: Exchange alternation and single-ion anisotropy in the antiferromagnetic Heisenberg chain S=1. Magnetic and thermal properties of the compound Ni2(EDTA)⋅6H2O, Inorg. Chem. 34, 2699–2704 (1995)

    Google Scholar 

  219. A. Escuer, R.  Vicente, X. Solans, M. Font-Badría: Crystal structure and magnetic properties of [Ni2(dpt)2(μ-ox)(μ-N3) n ](PF6) n : a new strategy to obtain S=1 alternating chains, Inorg. Chem. 33, 6007–6011 (1994)

    CAS  Google Scholar 

  220. M. Hagiwara, Y. Narumi, K. Kindo, M. Kohno, H. Nakano, R. Sata, M. Takahashi: Experimental verification of the gapless point in the S=1 antiferromagnetic bond alternating chain, Phys. Rev. Lett. 80, 1312–1315 (1998)

    CAS  Google Scholar 

  221. O. A. Starykh, R. R. P. Singh, A. W. Sandvik: Quantum critical scaling and temperature-dependent logarithmic corrections in the spin-half Heisenberg chain, Phys. Rev. Lett. 78, 539–542 (1997)

    CAS  Google Scholar 

  222. O. A. Starykh, A. W. Sandvik, R. R. P. Singh: Dynamics of the spin-1/2 Heisenberg chain at intermediate temperatures, Phys. Rev. B 55, 14953–14967 (1997)

    CAS  Google Scholar 

  223. N. Furukawa, M. Imada: Two-dimensional Hubbard model – metal insulator transition studied by Monte Carlo calculation –, J. Phys. Soc. Jpn. 61, 3331–3354 (1992)

    CAS  Google Scholar 

  224. A. Ino, T. Mizokawa, A. Fujimori, K. Tamasaku, H. Eisaki, S. Uchida, T. Kimura, T. Sasagawa, K. Kishio: Chemical potential shift in overdoped and underdoped La2-xSrxCuO4, Phys. Rev. Lett. 79, 2101–2104 (1997)

    CAS  Google Scholar 

  225. N. Harima, A. Fujimori, T. Sugaya, I. Terasaki: Chemical potential shift in lightly doped to overdoped Bi2Sr2Ca1−x R x Cu2O8+y (R=Pr, Er), Phys. Rev. B 67, 172501(1–4) (2003)

    Google Scholar 

  226. R. J. Birgeneau, D. R. Gabbe, H. P. Jenssen, M. A. Kastner, P. J. Picone, T. R. Thurston, G. Shirane, Y. Endoh, M. Sato, K. Yamada, Y. Hidaka, M. Oda, Y. Enomoto, M. Suzuki, T. Murakami: Antiferromagnetic spin correlations in insulating, metallic, and superconducting La2−x Sr x CuO4, Phys. Rev. B 38, 6614–6623 (1988)

    CAS  Google Scholar 

  227. M. Kohno: Ground-state properties of the two-dimensional t-J model, Phys. Rev. B 55, 1435–1441 (1997)

    CAS  Google Scholar 

  228. M. Kohno, M. Takahashi: Magnetization process of the spin-1/2 XXZ models on square and cubic lattices, Phys. Rev. B 56, 3212–3217 (1997)

    CAS  Google Scholar 

  229. V. J. Emery, S. A. Kivelson, H. Q. Lin: Phase separation in the t-J model, Phys. Rev. Lett. 64, 475–478 (1990)

    Google Scholar 

  230. W. O. Putikka, M. U. Luchini, T. M. Rice: Aspects of the phase diagram of the two-dimensional t-J model, Phys. Rev. Lett. 68, 538–541 (1992)

    Google Scholar 

  231. W. O. Putikka, M. U. Luchini: Limits on phase separation for two-dimensional strongly correlated electrons, Phys. Rev. B 62, 1684–1687 (2000)

    CAS  Google Scholar 

  232. P. Prelovšek, X. Zotos: Hole pairing and clustering in the two-dimensional t-J model, Phys. Rev. B 47, 5984–5991 (1993)

    Google Scholar 

  233. E. Dagotto, J. Riera, Y. C. Chen, A. Moreo, A. Nazarenko, F. Alcaraz, F. Ortolani: Superconductivity near phase separation in models of correlated electrons, Phys. Rev. B 49, 3548–3565 (1994)

    CAS  Google Scholar 

  234. J. Jaklič, P. Prelovšek: Thermodynamic properties of the planar t-J model, Phys. Rev. Lett. 77, 892–895 (1996)

    Google Scholar 

  235. C. S. Hellberg, E. Manousakis: Phase separation at all interaction strengths in the t-J model, Phys. Rev. Lett. 78, 4609–4612 (1997)

    CAS  Google Scholar 

  236. C. S. Hellberg, E. Manousakis: Green's-function Monte Carlo for lattice fermions: application to the t-J model, Phys. Rev. B 61, 11787–11806 (2000)

    CAS  Google Scholar 

  237. S. R. White, D. J. Scalapino: Density matrix renormalization group study of the striped phase in the 2D t-J model, Phys. Rev. Lett. 81, 1272–1275 (1998)

    Google Scholar 

  238. S. R. White, D. J. Scalapino: Energetics of domain walls in the 2D t-J model, Phys. Rev. Lett. 81, 3227–3230 (1998)

    CAS  Google Scholar 

  239. C. T. Shih, Y. C. Chen, T. K. Lee: Revisit phase separation of the two-dimensional t-J model by the power-Lanczos method, J. Phys. Chem. Sol. 62, 1797–1811 (2001)

    CAS  Google Scholar 

  240. J. D. Cloizeaux, M. Gaudin: Anisotropic linear magnetic chain, J. Math. Phys. (N.Y.) 7, 1384–1400 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Hu Associate Professor , Yoshihiko Nonomura Ph.D. or Masanori Kohno Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Hu, X., Nonomura, Y., Kohno, M. (2006). Monte Carlo Simulation. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Materials Measurement Methods. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30300-8_22

Download citation

Publish with us

Policies and ethics