Skip to main content

Abstract

Corrosion is defined as the interaction between a metal and its environment that results in changes in the properties of the metal, and which may lead to significant impairment of the function of the metal. In most cases the interaction between the metal and the environment is an electrochemical reaction where thermodynamic and kinetic considerations apply. Depending on the characteristics of the corrosion system various types of corrosion occur.

In this chapter all test methods available today are described. For scientific purposes as well as investigations in the laboratory so called conventional electrochemical test methods with direct current are primarily used (Sect. 12.1). In addition, newer techniques have been proposed (Sect. 12.1) that are based on dynamic system analysis (Sect. 12.2.1) or that allow study of corrosion processes in situ with spatial resolution down to 20 μm (Sects. 12.2.2 and 12.2.3). In the following sections a distinction has been made between testing for performance of corrosion protection measures such as inhibitors (Sect. 12.8) and testing that focuses on specific types of corrosion. In this context it is advisable to differentiate between corrosion without (Sect. 12.4) and with mechanical loading (Sect. 12.5) including hydrogen-assisted cracking (Sect. 12.6) which has some similarities to stress corrosion. High-temperature oxidation (Sect. 12.6) has a different mechanistic background than electrolytic corrosion because it is an oxidation process at a metal/gas or metal/salt solution interface. Exposure and on-site testing (monitoring) require specific considerations in the design of test facilities, probes and the interpretation of results (Sect. 12.4).

Appendix Part D provides a list of standards related to the various sections of this chapter. Another important source of information regarding corrosion testing is that edited by Baboian [12.1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AES:

Auger electron spectroscopy

ASTM:

American Society for Testing and Materials

CCT:

center-cracked tension

CE:

capillary electrophoresis

CE:

counter electrode

CERT:

constant extension rate tests

CT:

compact tension

CTE:

coefficient of thermal expansion

DA:

differential amplifier

DC:

direct-current

DIN:

Deutsches Institut für Normung

EDS:

energy-dispersive spectrometer

ER:

emission rates

FEPA:

Federation of European Producers of Abrasives

HCF:

high cycle fatigue

HISCC:

cathodic stress corrosion cracking

HL:

hydrodynamically lubricated

HPLC:

high-performance liquid chromatography

IC:

ion chromatography

ICPS:

inductively coupled plasma spectrometry

IR:

infrared region

ISO:

International Organization for Standardization

JIS:

Japanese Standardization Organization

LCF:

low cycle fatigue

LST:

linear system theory

MS:

mass spectrometer

NHE:

normal hydrogen electrode

OA:

operational amplifier

RDE:

rotating disc electrode

RE:

reference electrode

RMS:

root mean square

RRDE:

rotating ring disc electrode

SCE:

saturated Calomel electrode

SEM:

scanning electron microscope

SENB4:

four-point single-edge notch bend

SFM:

scanning force microscopy

SHE:

standard hydrogen electrode

SRET:

scanning reference electrode technique

STM:

scanning tunneling microscopes

SVET:

scanning vibrating electrode technique

WDS:

wavelength dispersive spectrometer

XAS:

X-ray absorption spectroscopy

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

ZRA:

zero-resistance ammeter

c.c.t.:

crevice corrosion temperature

c.p.t.:

critical pitting temperature

References

  1. R. Baboian: Corrosion Tests and Standards (ASTM, Philadelphia 1995)

    Google Scholar 

  2. DIN EN ISO 8044: Corrosion of Metals and Alloys – Basic Terms and Definitions (ISO 8044:1999) Trilingual version EN ISO 8044:1999

    Google Scholar 

  3. NBS: Economic Effects of Metallic Corrosion in the United States., National Bureau of Standards, Special Publication, Vol. 511 (NBS, Gaithersburg 1978)

    Google Scholar 

  4. W. von Baeckmann, W. Schwenk, W. Prinz (eds): Handbook of Cathodic Protection (Gulf, Houston 1997)

    Google Scholar 

  5. R. G. Kelly, J. R. Scully, D. W. Shoesmith, R. G. Buchheit: Electrochemical Techniques in Corrosion Science and Engineering (Marcel Dekker, New York 2003)

    Google Scholar 

  6. H. Kaesche: Corrosion of Metals (Springer, Berlin/Heidelberg 2003)

    Google Scholar 

  7. M. Schütze (ed): Corrosion and Environmental Degradation, Vol. I, II (Wiley–VCH, Weinheim 2000)

    Google Scholar 

  8. R. N. Parkins: Corrosion Processes (Applied Science, London 1982)

    Google Scholar 

  9. J. E. Strutt, J. R. Nicholls: Plant Corrosion (Ellis Horwood, Chichester 1987)

    Google Scholar 

  10. Mattson: Basic Corrosion Technology for Scientists and Engineers (Ellis Horwood, Chichester 1989)

    Google Scholar 

  11. N. Sridhar, G. Cragnolino (eds): Application of Accelerated Corrosion Tests to Service Life Prediction of Materials, Vol. 1194 (ASTM STP, Philadelphia 1994)

    Google Scholar 

  12. V. Romanov: Corrosion of Metals (US Department of Commerce, Springfield 1969)

    Google Scholar 

  13. P. Dillon: Corrosion Control in the Chemical Process Industry (McGraw–Hill, New York 1986)

    Google Scholar 

  14. D. Donovan: Protection of Metals from Corrosion in Storage and Plants (Ellis Horwood, Chichester 1986)

    Google Scholar 

  15. P. Marcus, J. Oudar: Corrosion Mechanisms in Theory and Practice (Marcel Dekker, New York 1995)

    Google Scholar 

  16. G. Fontana, N. D. Greene: Corrosion Engineering (McGraw–Hill, New York 1987)

    Google Scholar 

  17. C. Scully: The Fundamentals of Corrosion (Butterworth–Heinemann, Oxford 1990)

    Google Scholar 

  18. L. Shreir, R. A. Jarman, G. T. Burstein: Corrodion, Vol. 2, 3rd edn. (Butterworth–Heinemann, Oxford 1994)

    Google Scholar 

  19. P. Dillon (Ed.): Corrosion Handbook, No. 1, The Forms of Corrosion Recognition and Prevention (NACE, Houston 1982)

    Google Scholar 

  20. R. C. Weast: Handbook of Chemistry and Physics (CRC, Cleveland 1977) D 141

    Google Scholar 

  21. S. Trasatti: J. Electroanal. Chem. 52, 313 (1974)

    CAS  Google Scholar 

  22. R. Gomer, S. Tryson: J. Chem. Phys. 66, 4413 (1977)

    CAS  Google Scholar 

  23. R. Gomer, S. Tryson: J. Chem. Phys. 66(D61), 4413 (1977)

    CAS  Google Scholar 

  24. I. Barin, O. Knacke: Thermodynamic Poperties of Inorganic Substances (Springer, Berlin 1973)

    Google Scholar 

  25. R. Gomer, S. Tryson: J. Chem. Phys. 66(D 111), 4413 (1977)

    CAS  Google Scholar 

  26. M. Pourbaix: Atlas d'Equilibres Electrochimiques (Guthiers Villars&Cie, Paris 1963)

    Google Scholar 

  27. M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon, Oxford 1966)

    Google Scholar 

  28. K. J. Vetter: Electrochemical Kinetics (Academic, Berlin 1961) Fe3O4/Fe2O3 Gleichgew

    Google Scholar 

  29. H.-H. Strehblow: Mechanisms of pitting corrosion. In: Corrosion Mechanisms in Theory and Praxis, ed. by P. Marcus (Marcel Dekker, New York 2002) p. 258

    Google Scholar 

  30. H.-H. Strehblow: Phenomenological and Electrochemical fundamentals of Corrosion. In: Corrosion and Enviroanmental Degradation, ed. by M. Schütze (Wiley–VCH, Weinheim 1999) p. 59

    Google Scholar 

  31. H.-H. Strehblow: Pitting corrosion. In: Encyclopedia of Electrochemistry, Corrosion and Oxide Films, Vol. 4, ed. by A. J. Bard, M. Stratmann, G. S. Frankel (Wiley–VCH, Weinheim 2003) p. 337

    Google Scholar 

  32. R. Christen, G. Baars: Chemie (Sauerländer, Aarau 1977) p. 778

    Google Scholar 

  33. H.-H. Strehblow: Phenomenological and Electrochemical Fundamentals of Corrosion. In: Corrosion and Environmental Degradation, ed. by M. Schütze (VCH, Weinheim 1999) p. 1

    Google Scholar 

  34. E. Heusler: OH Katalyse, Z. Elektrochem. 62, 582 (1958)

    CAS  Google Scholar 

  35. J. Vetter: Elektrochemische Kinetik (Springer, Berlin 1961) p. 432

    Google Scholar 

  36. H. Kaesche: Die Korrosion der Metalle (Springer, Berlin 1979)

    Google Scholar 

  37. H. Kaesche: Die Korrosion der Metalle (Springer, Berlin 1990)

    Google Scholar 

  38. M. Stern: J. Electrochem. Soc. 102, 609 (1955)

    CAS  Google Scholar 

  39. K. J. Vetter, H.-H. Strehblow: Ber. Bunsen Ges. Physik. Chem. 74, 1024 (1970)

    CAS  Google Scholar 

  40. J. Newman, D. N. Hansen, K. J. Vetter: Electrochimica Acta 22, 829 (1974)

    Google Scholar 

  41. W. G. Levich: Physicochemical Hydrodynamics (Prentice Hall, New York 1962)

    Google Scholar 

  42. W. J. Albery, M. L. Hitchman: Ring Disc Electrodes (Clarendon, Oxford 1971)

    Google Scholar 

  43. B. P. Löchel, H.-H. Strehblow: Werkst. Korr. 31, 353 (1980)

    Google Scholar 

  44. S. Haupt, H.-H. Strehblow: Langmuir 3, 873 (1987)

    CAS  Google Scholar 

  45. G. Engelhardt, T. Jabs, H.-H. Strehblow: J. Electrochem. Soc. 139, 2176 (1992)

    CAS  Google Scholar 

  46. R. S. Lillard: Scanning Electrode Techniques fro Investigating near Surface Solution Current Densistiesin Analytical methods. In: Corrosion Science and Engineering, ed. by P. Marcus, F. Mansfeld (CRC Taylor and Francis, Boca Raton 2006) p. 571

    Google Scholar 

  47. H. S. Isaacs: J. Electrochem. Soc. 138, 722 (1991)

    CAS  Google Scholar 

  48. H. S. Isaacs, B. Vyas: Electrochemical Corrosion Testing, Vol. ASTM STP 727, ed. by F. Mansfeld, U. Bertocci (ASTM, Baltimore 1981) p. 3

    Google Scholar 

  49. M. Rohwerder, M. Stratmann, P. Leblanc, G. S. Frankel: Application of scanning kelvin probe in corrosion science. In: Analytical Methods in Corrosion Science and Engineering, ed. by P. Marcus, F. Mansfeld (CRC Taylor Francis, Boca Raton 2006) p. 605

    Google Scholar 

  50. M. Stratmann, K. T. Tim, H. Streckel: Z. Metallkd. 81, 715 (1990)

    CAS  Google Scholar 

  51. F. G. Cottrell: Z. Physik. Chem. 42, 385 (1903)

    Google Scholar 

  52. K. J. Vetter: Electrochemical Kinetics (Academic, New York 1967)

    Google Scholar 

  53. H. Gerischer, W. Vielstich: Z. Physik. Chem. N.F. 3, 16 (1955)

    CAS  Google Scholar 

  54. H.-H. Strehblow, P. Marcus: X-Ray Photoelectron Spectroscopy in corrosion Research. In: Analytical Methods in Corrosion Sience and NENgeneering, ed. by P. Marcus, F. Mansfeld (CRC Taylor Francis, Boca Raton 2006) p. 1

    Google Scholar 

  55. H.-H. Strehblow: Passivity of metals. In: Advances in Electrochemical Science and Engineering, ed. by R. C. Alkire, D. M. Kolb (Wiley–VCH, Weinheim 2003) p. 272

    Google Scholar 

  56. J. Castle: Auger electron spectroscopy. In: Analytical Methods in Corrosion Science and Engineering, ed. by P. Marcus, F. Mansfeld (CRC Taylor Francis, Boca Raton 2006) p. 39

    Google Scholar 

  57. D. Lützenkirchen-Hecht, H.-H. Strehblow: Synchrotron Methods for Corrosion Research. In: Analytical Methods in Corrosion Science and Engineering, ed. by P. Marcus, F. Mansfeld (CRC Taylor Francis, Boca Raton 2006) p. 169

    Google Scholar 

  58. J. L. Dawson, K. Hladky: The measurement of localized corrosion using electrochemical noise, Corrosion Sci. 21, 317–322 (1981)

    Google Scholar 

  59. J. L. Dawson, K. Hladky: The measurement of corrosion using 1/f noise, Corrosion Sci. 22, 231–237 (1982)

    Google Scholar 

  60. J. L. Dawson, J. Uruchurtu: Electrochemical Methods in Corrosion Research, Mater. Sci. Forum 8, 436 (1986)

    Google Scholar 

  61. A. Legat: Electrochemical Noise as the basis of corrosion monitoring, 12nd Int. Corrosion Congress 3A, 1410–1419 (1993)

    CAS  Google Scholar 

  62. B. Lumsden, M. W. Kendig, S. Jeanjaquet: Electrochemical noise for carbon steel in sodium chloride solutions. – Effect of chloride and oxygen acitivity, Vol. CORROSION/92 (National Association of Corrosion Engineers (NACE), Houston/Tx 1992) Paper 224

    Google Scholar 

  63. N. Rothwell, D. A. Eden: Electrochemical noise techniques for determining corrosion rates and mechanisms, Vol. CORROSION/92 (National Association of Corrosion Engineers (NACE), Houston/Tx 1992) Paper 223

    Google Scholar 

  64. A. Cottis, C. A. Loto: Electrochemical noise generation during SCC (stress corrosion cracking) of high strength carbon steel, Corrosion 46, 12–19 (1990)

    CAS  Google Scholar 

  65. H. Xiao, F. Mansfeld: Development of Electrochemical Test Methods for the Study of Localized Corrosion Phenomena in Biocorrosion (ACS Symposium, Washington D.C. 1992)

    Google Scholar 

  66. H. Xiao, F. Mansfeld: Electrochemical noise analysis of iron exposed to NaCl solutions of different corrosivity, J. Electrochem. Soc. 140, 2205–2209 (1993)

    Google Scholar 

  67. H. Xiao, F. Mansfeld: Electrochemical noise analysis of iron exposed to NaCl solutions of different corrosivity, Vol. 3A (12nd Int. Corrosion Congress, Houston/Tx 1993) pp. 1388–1402

    Google Scholar 

  68. H. Böhni: Schweiz. Bauzeit. 93, 603 (1975)

    Google Scholar 

  69. H. Kaesche: Die Korrosion der Metalle, 3rd edn. (Springer Verlag, Berlin 1990)

    Google Scholar 

  70. DIN 50922: Ausgabe Oktober 1985, Korrosion der Metalle, Untersuchung der Beständigkeit von metallischen Wekstoffen gegen Spannungsrisskorrosion

    Google Scholar 

  71. DIN EN ISO 7539: Teil 1 bis 7, Ausgabe August 1995, Korrosion der Metalle und Legierungen, Prüfung der Spannungsrisskorrosion

    Google Scholar 

  72. N. Parkins, F. Mazza, J. J. Royuela, J. C. Scully: Brit. Corros. J. 7, 154 (1972)

    CAS  Google Scholar 

  73. B. Stellwag, H. Kaesche: Werkst. Korros. 33, 274, 323 (1982)

    CAS  Google Scholar 

  74. H. Kaesche: Bruchvorgänge (Vorträge der 20. Sitzung des DVM-Arbeitskreises, Frankfurt am Main 1988) p. 9/45

    Google Scholar 

  75. H. Böhni: Werkst. Korros. 26, 199 (1975)

    Google Scholar 

  76. F. Kuster, K. Bohnenkamp, H.-J. Engell: Werkst. Korros. 29, 792 (1978)

    CAS  Google Scholar 

  77. R. Grauer, B. Knecht, P. Kreis, J. R. Simpson: Werkst. Korros. 42, 637 (1991)

    CAS  Google Scholar 

  78. F. Stoll: Spannungsrisskorrosion von Spannstählen Ph.D. Thesis (Universität Erlangen–Nürnberg, Erlangen 1982)

    Google Scholar 

  79. E. Wendler-Kalsch: Grundlagen und Mechanismen der H-induzierten Korrosion metallischer Werkstoffe. In: Wasserstoff und Korrosion, ed. by D. Kuron (Verlag I. Kuron, Bonn 1986)

    Google Scholar 

  80. C. A. Zapffe, C. E. Sims: Trans. AIME 145, 225 (1941)

    Google Scholar 

  81. N. J. Petch, P. Stables: Nature 169, 842 (1952)

    Google Scholar 

  82. J. K. Tien, A. W. Thompson, J. M. Bernstein, R. J. Richards: Metall. Trans. A 7A, 821 (1976)

    CAS  Google Scholar 

  83. R. Troiano: Trans. ASM 52, 54 (1960)

    Google Scholar 

  84. R. A. Oriani: Ber. de Bunsenges. 76, 848 (1972)

    CAS  Google Scholar 

  85. U. Nürnberger: Korrosion und Korrosionsschutz im Bauwesen, Vol. 1 (Bauverlag, Weisbaden, Berlin 1995)

    Google Scholar 

  86. E. Riecke: Arch. Eisenhüttenwes. 49, 509 (1978)

    CAS  Google Scholar 

  87. E. Riecke: Arch. Eisenhüttenwes. 44, 647 (1973)

    CAS  Google Scholar 

  88. J. R. Davies (ed.): Heat-Resistant Materials (ASM International, Materials Park (Ohio) 1997) pp. 31–66

    Google Scholar 

  89. ASTM G54-84: Standard Practice for Simple Static Oxidation Testing (ASTM International, Philadelphia 1996) (Withdrawn 2002)

    Google Scholar 

  90. ASTM B76-90: Standard Test Method for Accelerated Life of Nickel–Chromium and Nickel–Chromium–Iron Alloys for Electrical Heating (ASTM International, Philadelphia 2001)

    Google Scholar 

  91. ASTM B78-90: Standard Test Method of Accelerated Life of Iron-Chromium-Aluminum Alloys for Electrical Heating (ASTM International, Philadelphia 2001)

    Google Scholar 

  92. ASTM G79-83: Standard Practice for Evaluation of Metals Exposed to Carburization Environments (e1, ASTM International, Philadelphia 1996)

    Google Scholar 

  93. A. B. Tomkings, J. R. Nicholls, D. G. Robertson: EC Report, EUR 19479 EN, Discontinuous Corrosion Testing in High Temperature Gaseous Atmospheres (TESTCORR, London 2001)

    Google Scholar 

  94. JIS Z 2281: Test method for continuous oxidation test at elevated temperatures for metallic materials (Japanese Standards Association, Tokio 1993)

    Google Scholar 

  95. JIS Z282: Method of cyclic oxidation testing at elevated temperatures for metallic materials (Japanese Standards Association, Tokio 1996)

    Google Scholar 

  96. H. J. Grabke, D. B. Meadowcroft (eds): Guidelines for Methods of testing and Research in High Temperature Corrosion (European Federation of Corrosion Publications, The Institute of Materials, London 1995) p. 14

    Google Scholar 

  97. M. Schütze, W. J. Quadakkers (eds): Cyclic Oxidation of High Temperature Materials – Mechanisms, Testing Methods, Characterisation and Life Time Estimation (European Federation of Corrosion Publications, The Institute of Materials, London 1999) p. 27

    Google Scholar 

  98. M. Malessa, M. Schütze: COTEST – Cyclic Oxidation Testing – Development of a Code of Practice for the Characterisation of High Temperature Materials Performance (EC Final Report, Brussels 2005)

    Google Scholar 

  99. H. Echsler: Oxidationsverhalten und mechanische Eigenschaften von Wärmedämmschichten und deren Einfluss auf eine Lebensdauervorhersage, Dissertation (RWTH, Aachen 2002)

    Google Scholar 

  100. A. Rahmel, W. Schwenk: Korrosion und Korrosionsschutz von Stählen (Verlag Chemie, Weinheim 1977)

    Google Scholar 

  101. H. Hindam, D. P. Whittle: Oxid. Met. 83, 245 (1982)

    Google Scholar 

  102. M. J. McNallan, W. W. Liang, S. H. Kim, C. T. Kang: Acceleration of the high temperature oxidation of metals by chlorine. In: High Temperature Corrosion, ed. by R. A. Rapp (NACE, Houston 1983) pp. 316–321

    Google Scholar 

  103. ASTM E633-00: Standard Guide for Use of Thermocouples in Creep and Stress-Rupture Testing to 1800 °F (1000 °C) in Air (ASTM International, Philadelphia 2000)

    Google Scholar 

  104. ASTM E220-02: Standard Test Method for Calibration of Thermocouples by Comparison Techniques (ASTM International, Philadelphia 2002)

    Google Scholar 

  105. ASTM E230-03: Standard Specification and Temperature-Electromotive Force (EMF) Tables for Standardized Thermocouples (ASTM International, Philadelphia 2003)

    Google Scholar 

  106. ASTM E1350-97: Standard Test Methods for Testing Sheathed Thermocouples Prior to, During, and After Installation (ASTM International, Philadelphia 2001)

    Google Scholar 

  107. FEPA 42-GB-1984 R: FEPA-Standard for bonded abrasive grains of fused aluminium oxide and silicon carbide (Federation of European Producers of Abrasives, Paris 1993)

    Google Scholar 

  108. ISO 6344: Coated abrasives – Grain size analysis (International Organisation for Standardization, Geneva 1998)

    Google Scholar 

  109. M. Schütze: Protective Oxide Scales and Their Breakdown (Wiley, West Sussex 1997)

    Google Scholar 

  110. G. Strehl: Materials at High Temperatures, submitted (The Effect of Heating on the total Oxidation Time), Science Reviews, St. Albans, UK

    Google Scholar 

  111. M. Malessa, M. Schütze: Development of guidelines for Cyclic Oxidation Testing of High Temperature Materials (EUROCORR, Budapest 2003)

    Google Scholar 

  112. M. Malessa, M. Schütze: Test method for Thermal Cycling Oxidation Testing, http://cotest.dechema.de

  113. M. Welker, A. Rahmel, M. Schütze: Investigations on the influence of internal nitridation on creep crack growth in alloy 800 H, Metall. Trans. A 20, 1553 (1989)

    Google Scholar 

  114. V. Guttmann, M. Schütze: Interaction of corrosion and mechanical properties. In: High Temperature Alloys for Gas Turbines and Other Applications, ed. by W. Betz, et al. (Reidel, Dordrecht 1986) p. 293

    Google Scholar 

  115. V. Guttmann, M. Merz: Corrosion and Mechanical Stress at High Temperatures (Applied Science, London 1981)

    Google Scholar 

  116. S. R. J. Saunders, H. E. Evans, J. A. Stringer (eds): Materials at High Temperatures, Vol. 12 (Special Issue Mechanical Properties of Protective Oxide Scales, Springer, Netherland 1994) pp. 83–256 also: 1995, 13, 75–80; 195, 13, 181–195

    Google Scholar 

  117. V. Guttmann: Environmental Creep Testing, http://ie.jrc.cec.eu.int/facilities.html

  118. M. Schütze: Deformation and cracking behaviour of protective oxide scales on heat-resistant steels under tensile strain, Oxid. Met. 24, 199 (1985)

    Google Scholar 

  119. S. R. Holdsworth, W. Hoffelner: Fracture mechanics and crack growth in fatigue. In: High Temperature Alloys for Gas Turbines, ed. by R. Brunetaud, D. Coutsouradis, T. B. Gibbons, Y. Lindblom, D. B. Meadowcroft, R. Stickler (Springer, Netherland 1982) p. 345

    Google Scholar 

  120. M. Schütze, B. Glaser: The influence of Cl-containing atmospheres on creep crack growth at 800 °C. In: Heat-Resistant Materials II, ed. by K. Natesan, et al. (ASM International, Materials Park (Ohio) 1995) pp. 343–351

    Google Scholar 

  121. M. Schütze: Anrißentstehung und Anrißwachstum unter korrosiven Bedingungen bei hohen Temperaturen. In: Korrosion und Bruch (DVM, Berlin 1988) p. 279

    Google Scholar 

  122. K.-H. Döhle, A. Rahmel, M. Schmidt, M. Schütze: Two different test rigs for creep experiments in aggressive environments. In: Corrosion and Mechanical Stress at High Temperatures, ed. by V. Guttmann, M. Merz (Applied Science, London 1981) p. 441

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernd Isecke Dr. , Michael Schütze Prof. or Hans-Henning Strehblow Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Isecke, B., Schütze, M., Strehblow, HH. (2006). Corrosion. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Materials Measurement Methods. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30300-8_12

Download citation

Publish with us

Policies and ethics