Floating-Point Filter for the Line Intersection Algorithm

  • Andras Frankel
  • Doron Nussbaum
  • Jörg-Rudiger Sack
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3234)


The use of floating-point arithmetic in geometric computation represents a formidable challenge for development and implementation of geometric algorithms. On one hand, one thrives to develop algorithms that are robust and produce accurate results, while on the other hand, one attempts to achieve rapid execution time. In particular for GIS applications, where large problem sizes are frequently encountered, efficiency considerations are important. In this paper, we present a floating-point filter written specifically for the important line intersection operation that is robust, outperforms existing general purpose filters and results in an accurate discovery and representation of topology from the geometric information.


Line Segment Intersection Point Computational Geometry Interval Arithmetic Rational Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avnaim, F., Boissonnat, J.-D., Devillers, O., Preparata, F.P., Yvinec, M.: Evaluating Signs of Determinants Using Single-Precision Arithmetic. Algorithmica 17(2), 111–132 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brönnimann, H., Melquiond, G., Pion, S.: The Boost Interval Arithmetic Library. In: Proceedings of the 5th Conference on Real Numbers and Computers, pp. 65–80 (2003)Google Scholar
  3. 3.
    Brönnimann, H., Burnikel, C., Pion, S.: Interval arithmetic yields efficient dynamic filters for computational geometry. Discrete Applied Mathematics 109, 25–47 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    The Core Library, see
  5. 5.
    Lang, S.: Linear Algebra, 3rd edn. Springer, Heidelberg (1987)zbMATHGoogle Scholar
  6. 6.
    Funke, S., Näher, S., Mehlhorn, K.: Structural Filtering – A Paradigm for Efficient and Exact Geometric Programs. In: Proc (electronic) 11th Canadian Conference on Computational Geometry (CCCG), Vancouver, Canada (1999)Google Scholar
  7. 7.
    Mehlhorn, K., Näher, S.: The Implementation of Geometric Algorithms. In: 13th World Computer Congress IFIP 1994, vol. 1, pp. 223–231. Elsevier Science B.V., Amsterdam (1994)Google Scholar
  8. 8.
    Mehlhorn, K., Näher, S.: The LEDA Platform of Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999)Google Scholar
  9. 9.
    Goldberg, D.: “What Every Computer Scientist should know about Floating-Point Arithmetic. ACM Computing Surveys 23(1), 5–48 (1991)CrossRefGoogle Scholar
  10. 10.
    Dobkin, D.P., Silver, D.: Recipes for geometry and numerical analysis - Part I: an empirical study. In: Proceedings of the Fourth annual Symposium on Computational Geometry, pp. 93–105 (1988)Google Scholar
  11. 11.
    Hayes, B.: A Lucid Interval. American Scientist 91(6), 484–488 (2003)Google Scholar
  12. 12.
    Karasick, M., Lieber, D., Nackman, L.R.: Efficient Delaunay Triangulations Using Rational Arithmetic. ACM Transactions on Graphics 10(1), 71–91 (1991)CrossRefGoogle Scholar
  13. 13.
    Kearfott, R.B.: Interval Computations: Introduction, Uses and Resources (2004),
  14. 14.
    Knott, G., Jou, E.: A Program to Determine Whether Two Line Segments Intersect, Technical Report CAR-TR-306, CS-TR- 1884, DCR-86-05557, Computer Science Deptartment, University of Maryland, College Park (1987)Google Scholar
  15. 15.
    Kulisch, U.W., Miranker, W.L.: Computer Arithmetic in Theory and Practice. Academic Press, New York (1981)zbMATHGoogle Scholar
  16. 16.
    Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric intersections. IEEE Transactions on Computers C-28, 643–647 (1979)CrossRefGoogle Scholar
  17. 17.
    Rafalin, E., Souvaine, D., Streinu, I.: Topological Sweep in Degenerate cases. In: Proceedings of the 4th International Workshop on Algorithm Engineering and Experiments, pp. 155–165. Springer, Berlin (2002)CrossRefGoogle Scholar
  18. 18.
    Ramshaw, L.: The Braiding of Floating Point Lines, CSL Notebook Entry, Xerox Parc (1982)Google Scholar
  19. 19.
    Schirra, S.: Robustness and Precision Issues in Geometric Computation. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 597–632 (1999)Google Scholar
  20. 20.
    Shewchuk, J.R.: Adaptive Precision Floating-point Arithmetic and Fast Robust Geometric Predicates, Technical Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon University (1996)Google Scholar
  21. 21.
    Yap, C.: On Guaranteed Accuracy Computation. In: Chen, F., Wang, D. (eds.) Geometric Computation, World Scientific Publishing Co., Singapore (2004) (to appear)Google Scholar
  22. 22.
    Peucker, T.K.: A Theory of Cartographic Line. In: Proceedings, Second International Symposium on Computer-Assisted Cartography, AUTO-CARTO II, pp. 508–518 (1975)Google Scholar
  23. 23.
    Lanthier, M.A.: Shortest Path Problems on Polyhedral Surfaces, Ph. D. thesis, School of Computer Science, Carleton University, Ottawa, Ontario, Canada (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Andras Frankel
    • 1
  • Doron Nussbaum
    • 1
  • Jörg-Rudiger Sack
    • 1
  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations