Procedure to Select the Best Dataset for a Task

  • Andrew U. Frank
  • Eva Grum
  • Bérengère Vasseur
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3234)


This paper models the decision process when selecting among different datasets the one most suitable for a task. It shows how metadata describing the quality of the dataset and descriptions of the task are used to make this decision. A simple comparison of task requirements and available data quality is supplemented with general, common-sense knowledge about effects of errors, lack of precision in the data and the dilution of quality over time. It consists of two steps: first, compute the data quality considering the time elapsed since the data collection; and second, assess the utility of the available data for the decision. A practical example of an assessment of the suitability of two datasets for two different tasks is computed and leads to the intuitively expected result.


Data Quality User Group Single Decision Task Description Data Quality Assessment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burrough, P.: Natural Objects with Indeterminate Boundaries. In: Burrough, P., Frank, A. (eds.) Geographic Objects with Indeterminate Boundaries, pp. 3–28. Taylor & Francis, London (1996)Google Scholar
  2. 2.
    Chrisman, N.: The Role of Quality Information in the Long-Term Functioning of a Geographic Information System. Cartographica 21(3,4), 79–87 (1984)Google Scholar
  3. 3.
    Frank, A.: Overlay Processing in Spatial Information Systems. In: Eighth International Symposium on Computer-Assisted Cartography (AUTO-CARTO 8), Baltimore, MD, pp. 16–31 (1987)Google Scholar
  4. 4.
    Frank, A.: Metamodels for Data Quality Description. In: Jeansoulin, R., Goodchild, M. (eds.) Data Quality in Geographic Information-From Error to Uncertainty, Paris, Editions Hermès, pp. 15–29 (1998)Google Scholar
  5. 5.
    Frank, A.: Ontology for Spatio-Temporal Databases. In: Sellis, T.K., Koubarakis, M., Frank, A., Grumbach, S., Güting, R.H., Jensen, C., Lorentzos, N.A., Manolopoulos, Y., Nardelli, E., Pernici, B., Theodoulidis, B., Tryfona, N., Schek, H.-J., Scholl, M.O. (eds.) Spatio-Temporal Databases. LNCS, vol. 2520, pp. 9–78. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Goodchild, M.F., Gopal, S.: The Accuracy of Spatial Databases. Taylor & Francis, London (1990)Google Scholar
  7. 7.
    Grum, E., Vasseur, B.: How to Select the Best Dataset for a Task? In: Frank, A. (ed.) International Symposium on Spatial Data Quality 2004, Vienna, Austria, pp. 197–206 (2004)Google Scholar
  8. 8.
    Hunter, G., Goodchild, M.: Dealing with Error in a Spatial Database: A Simple Case Study. Photogrammetric Engineering & Remote Sensing 61(5), 529–537 (1995)Google Scholar
  9. 9.
    Hutchins, E.: Cognition in the Wild. The MIT Press, Cambridge (1995)Google Scholar
  10. 10.
    INSPIRE INfrastructure for SPatial InfoRmation in Europe [http] (2003), Available from [cited 14.07. 2004]
  11. 11.
    Jahn, M.: User Needs in a Maslow Schemata. In: Frank, A. (ed.) International Symposium on Spatial Data Quality 2004, Vienna, Austria, pp. 169–182 (2004)Google Scholar
  12. 12.
    Krek, A.: An Agent-Based Model for Quantifying the Economic Value of Geographic Information. Ph.D. Department of Geoinformation. Technical University Vienna, Vienna, Austria (2002)Google Scholar
  13. 13.
    Krek, A., Frank, A.: Optimization of Quality of Geoinformation Products. In: Whigham, P. (ed.) Proceedings of the Eleventh Annual Colloquium of the Spatial Information Research Centre, Dunedin, New Zealand, pp. 151–159 (1999)Google Scholar
  14. 14.
    Krek, A., Frank, A.: The Economic Value of Geo Information. Geo-Informations-Systeme 13(3), 10–12 (2000)Google Scholar
  15. 15.
    Kuipers, B.: Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge. The MIT Press, Cambridge (1994)Google Scholar
  16. 16.
    Moellering, H.: A Draft Proposed Standard for Digital Cartographic Data, National Committee for Digital Cartographic Standards (1987)Google Scholar
  17. 17.
    Morrison, J.: The Proposed Standard for Digital Cartographic Data. American Cartographer 15(1), 9–140 (1988)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Reiter, R.: Towards a Logical Reconstruction of Relational Database Theory. In: Brodie, M., Mylopolous, M., Schmidt, L. (eds.) On Conceptual Modelling, pp. 191–233. Springer, Heidelberg (1984)Google Scholar
  19. 19.
    Timpf, S., Raubal, M., Kuhn, W.: Experiences with Metadata. In: Proceedings of the 7th International Symposium on Spatial Data Handling, SDH 1996, Delft, The Netherlands, IGU: 12B, pp. 31–43 (1996)Google Scholar
  20. 20.
    The Use, U.: of Metadata in University Libraries and Campuses [http] (2001), Available from [cited 28.06.04 2004]
  21. 21.
    Wien, M.: Maps of the City of Vienna (2004)Google Scholar
  22. 22.
    Wilmersdorf, E.: The Implementation of A Multidisciplinary GlS-Network for An Urban Geocommunication System. In: Proceedings of EGIS 1992, Munich, Germany. EGIS Foundation, pp. 1408–1416 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Andrew U. Frank
    • 1
  • Eva Grum
    • 1
  • Bérengère Vasseur
    • 2
  1. 1.Institute for Geoinformation and CartographyTechnical University of ViennaViennaAustria
  2. 2.Laboratoire des Sciences de l’Information et des Systems LSISUniversité de ProvenceMarseille cedex 13France

Personalised recommendations