Advertisement

Geo-Self-Organizing Map (Geo-SOM) for Building and Exploring Homogeneous Regions

  • Fernando Bação
  • Victor Lobo
  • Marco Painho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3234)

Abstract

Regionalization and uniform/homogeneous region building constitutes one of the most longstanding concerns of geographers. In this paper we explore the Geo-Self-Organizing Map (Geo-SOM) as a tool to develop homogeneous regions and perform geographic pattern detection. The Geo-SOM presents several advantages over other available methods. The possibility of “what-if” analysis, coupled with powerful visualization tools and the accommodation of spatial constraints, constitute some of the most relevant features of the Geo-SOM. In this paper we show the opportunities made available by this tool and explore different features which allow rich exploratory spatial data analysis.

Keywords

Input Space Homogeneous Region Artificial Dataset Modifiable Areal Unit Problem Best Match Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amrhein, C.G.: Searching for the elusive aggregation effect: evidence from statistical simulation. Environment and Planning A 27, 105–120 (1995)CrossRefGoogle Scholar
  2. Anselin, L.: What is special about spatial data? Alternative perspectives on spatial data analysis. In: Griffith, D. (ed.) Spatial Statistics, Past, Present and Future, Ann Arbor, MI, Institute of Mathematical Geography, pp. 63–77 (1990)Google Scholar
  3. Behme, H., Brandt, W., Strube, H.: Speech Recognition by Hierarchical Segment Classification. In: Gielen, S., Kappen, B. (eds.) Proceedings of the International Conference on Artificial Neural Networks, London, UK, pp. 416–419 (1993)Google Scholar
  4. Birkin, M., Clarke, G.: GIS, geodemographics and spatial modeling in the UK financial service industry. Journal of Housing Research 9, 87–111 (1998)Google Scholar
  5. Birkin, M., Clarke, G., Clark, M.: GIS for Business and Service Planning. In: Goodchild, M., Longley, P., Maguire, D., Rhind, D. (eds.) Geographical Information Systems, Cambridge, Geoinformation (1999)Google Scholar
  6. Chandrasekaran, V., Liu, Z.-Q.: Topology Constraint Free Fuzzy Gated Neural Networks for Pattern Recognition. IEEE Transactions on Neural Networks 9(3), 483–502 (1998)CrossRefGoogle Scholar
  7. Chandrasekaran, V., Palaniswami, M.: Spatio-Temporal Feature Maps using Gated Neuronal Architecture. IEEE Transactions on Neural Networks 6(5), 1119–1131 (1995)CrossRefGoogle Scholar
  8. Cottrell, M., Fort, J., Pagès, G.: Theoretical Aspects of the SOM Algorithm. Neurocomputing 21(1), 119–138 (1998)zbMATHCrossRefGoogle Scholar
  9. Euliano, N., Principe, J.: Spatio-Temporal Self-Organizing Feature Maps. In: Proceedings of the International Conference on Neural Networks, Washington, DC, pp. 1900–1905 (1996)Google Scholar
  10. Euliano, N., Principe, J.: A Spatio-Temporal Memory Based on SOMs with Activity Diffusion. In: Oja, E., Kaski, S. (eds.) Kohonen Maps, pp. 253–266. Elsevier, Amsterdam (1999)CrossRefGoogle Scholar
  11. Fahmy, E., Gordon, D., Cemlyn, S.: Poverty and Neighbourhood Renewal in West Cornwall. In: Social Policy Association Annual Conference, Nottingham, UK (2002), http://www.bris.ac.uk/poverty/cornw/02SPA.doc
  12. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, Cambridge, MA (1996)Google Scholar
  13. Feng, Z., Flowerdew, R.: Fuzzy Geodemographics: A Contribution from Fuzzy Clustering Methods. In: Carver, S. (ed.) Innovations in GIS, vol. 5, pp. 119–127. Taylor & Francis, London (1998)Google Scholar
  14. Fotheringham, A.S., Wong, D.: The Modifiable Areal Unit Problem in Multivariate Statistical Analysis. Environment and Planning A 23(7), 1025–1044 (1991)CrossRefGoogle Scholar
  15. George, J., Lamar, B., Wallace, C.: Political District Determination Using Large-Scale Optimization. Socio-Economic Planning Sciences 31(1), 11–28 (1997)CrossRefGoogle Scholar
  16. Gomes, H., Lobo, V., Ribeiro, A.: Application of Clustering Methods for Optimizing the Location of Treated Wood Remediation Units. XI Jornadas de Classificação e Análise de Dados, Lisbon, Portugal (2004)Google Scholar
  17. Gould, P.: Let Data Speak for Themselves. Annals of the Association of American Geographers 71, 166–176 (1981)CrossRefGoogle Scholar
  18. Guo, D., Peuquet, D., Gahegan, M.: ICEAGE: Interactive Clustering and Exploration of Large and High-Dimensional Geodata. GeoInformatica 7(3), 229–253 (2003)zbMATHCrossRefGoogle Scholar
  19. Haggett, P., Cliff, A.D., Frey, A.E.: Locational Analysis in Human Geography, 2nd edn. Arnold, London (1977)Google Scholar
  20. Haining, R., Wise, S., Blake, M.: Constructing Regions for Small Area Analysis: Material Deprivation and Colorectal Cancer. Journal of Public Health Medicine 16(4), 429–438 (1994)Google Scholar
  21. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, New York (2000)Google Scholar
  22. Horn, M.: Solution Techniques for Large Regional Partitioning Problems. Geographical Analysis 27(3), 230–248 (1995)CrossRefGoogle Scholar
  23. Hsieh, K.-H., Tien, F.: Self-Organizing Feature Maps for Solving Location– Allocation Problems with Rectilinear Distances. Computers and Operations Research 31(7), 1017–1031 (2004)zbMATHCrossRefGoogle Scholar
  24. Ichiki, H., Hagiwara, M., Nakagawa, N.: Self-Organizing Multi-Layer Semantic Maps. In: Proceedings of International Conference on Neural Networks, Seattle, WA, pp. 357–360 (1991)Google Scholar
  25. Kangas, J.: Temporal Knowledge in Locations of Activations in a Self-Organizing Map. In: Proceedings of the International Conference on Artificial Neural Networks, Brighton, England, pp. 117–120 (1992)Google Scholar
  26. Kohonen, T.: Clustering, Taxonomy, and Topological Maps of Patterns. In: Proceedings of the 6th International Conference on Pattern Recognition, Munich, Germany, pp. 114–128 (1982)Google Scholar
  27. Kohonen, T.: The Hypermap Architecture. In: Kohonen, T., Mäkisara, K., Simula, O., Kangas, J. (eds.) Artificial Neural Networks, Helsinki, vol. 1, pp. 1357–1360. Elsevier, Amsterdam (1991)Google Scholar
  28. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  29. Leischmann, B., Paraschis, J.: Solving a Large Scale Districting Problem: A Case Report. Computers and Operations Research 15(6), 521–533 (1998)CrossRefGoogle Scholar
  30. Lobo, V., Bação, F., Painho, M.: Regionalization and Homogeneous Region Building Using the Spatial Kangas Map. In: Toppen, F., Prastacos, P. (eds.) 7th AGILE Conference on Geographic Information Science, Heraklion, Greece, pp. 301–313 (2004)Google Scholar
  31. Macmillan, W., Pierce, T.: Optimization Modelling in a GIS Framework: The Problem of Political Redistricting. In: Fotheringham, A.S., Rogerson, P. (eds.) Spatial Analysis and GIS, pp. 221–246. Taylor & Francis, London (1994)Google Scholar
  32. Martin, D.: From Enumeration Districts to Output Areas: Experiments in the Automated Design of a Census Output Geography. Population Trends 88, 36–42 (1997)Google Scholar
  33. Martin, D.: Optimizing Census Geography: The Separation of Collection and Output Geographies. International Journal of Geographical Information Science 12(7), 673–685 (1998)CrossRefGoogle Scholar
  34. Mehrotra, A., Johnson, E., Nemhauser, G.: An Optimization Based Heuristic for Political Districting. Management Science 44(8), 1100–1114 (1998)zbMATHCrossRefGoogle Scholar
  35. Miller, H., Han, J.: Geographic Data Mining and Knowledge Discovery. Taylor & Francis, London (2001)CrossRefGoogle Scholar
  36. Morphet, C.: The Mapping of Small Area Census Data–A Consideration of the Effects of Enumeration District Boundaries. Environment and Planning A 25(9), 1267–1277 (1993)CrossRefGoogle Scholar
  37. Openshaw, S.: The Modifiable Areal Unit problem. CATMOG, Geo-abstracts. Norwich, UK (1984)Google Scholar
  38. Openshaw, S., Blake, M., Wymer, C.: Using Neurocomputing Methods to Classify Britain’s Residential Areas. In: Fisher, P. (ed.) Innovations in GIS, vol. 2, pp. 97–111. Taylor & Francis, Abington (1995)Google Scholar
  39. Openshaw, S., Wymer, C.: Classifying and Regionalizing Census Data. In: Openshaw, S. (ed.) Census Users Handbook, Cambridge, UK, GeoInformation International, pp. 239–268 (1995)Google Scholar
  40. Painho, M., Bação, F.: Using Genetic Algorithms in Clustering Problems. In: Proceedings of the 5th International Conference on GeoComputation, University of Greenwich, UK (2000) (CD-ROM)Google Scholar
  41. Sarac, A., Batta, R., Bhadury, J., Rump, C.: Reconfiguring Police Reporting Districts in the City of Buffalo. OR Insight 12(3), 16–24 (1999)CrossRefGoogle Scholar
  42. Skupin, A.: A Novel Map Projection Using an Artificial Neural Network. In: 21st International Cartographic Conference, Durban, South Africa, pp. 1165–1172 (2003) (CD-ROM)Google Scholar
  43. Tobler, W.: A Computer Model Simulating Urban Growth in the Detroit Region. Economic Geography 46(2), 234–240 (1970)CrossRefGoogle Scholar
  44. Ultsch, A., Siemon, H.: Kohonenś Self-Organizing Feature Maps for Exploratory Data Analysis. In: Proceedings of the International Neural Network Conference, pp. 305–308. Kluwer, Dordrecht (1990)Google Scholar
  45. Vesanto, J., Himberg, J., Alhoniemi, J., Parhankangas, J.: SOM Toolbox for Matlab 5. Espoo, Helsinki University of Technology: 59 (2000)Google Scholar
  46. Wise, S., Haining, R., Ma, J.: Regionalisation Tools for the Exploratory Spatial Analysis of Health Data. In: Fisher, M., Getis, A. (eds.) Recent Developments in Spatial Analysis–Spatial Statistics, Behavioural Modelling and Neurocomputing, pp. 83–100. Springer, Berlin (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Fernando Bação
    • 1
  • Victor Lobo
    • 1
    • 2
  • Marco Painho
    • 1
  1. 1.Instituto Superior de Estatística e Gestão de InformaçãoUniversidade Nova de LisboaLisboaPortugal
  2. 2.Academia Naval, AlfeiteAlmadaPortugal

Personalised recommendations