Knowledge-Theoretic Properties of Strategic Voting

  • Samir Chopra
  • Eric Pacuit
  • Rohit Parikh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3229)

Abstract

Results in social choice theory such as the Arrow and Gibbard-Satterthwaite theorems constrain the existence of rational collective decision making procedures in groups of agents. The Gibbard-Satterthwaite theorem says that no voting procedure is strategy-proof. That is, there will always be situations in which it is in a voter’s interest to misrepresent its true preferences i.e., vote strategically. We present some properties of strategic voting and then examine – via a bimodal logic utilizing epistemic and strategizing modalities – the knowledge-theoretic properties of voting situations and note that unless the voter knows that it should vote strategically, and how, i.e., knows what the other voters’ preferences are and which alternate preference P′ it should use, the voter will not strategize. Our results suggest that opinion polls in election situations effectively serve as the first n–1 stages in an n stage election.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arrow, K.J.: Social choice and individual values, 2nd edn. Wiley, New York (1963)Google Scholar
  2. 2.
    Benoit, J.-P.: Strategic manipulation in games when lotteries and ties are permitted. Journal of Economic Theory 102, 421–436 (2002)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bonanno, G.: Modal logic and game theory: two alternative approaches. Risk Decision and Policy 7, 309–324 (2002)CrossRefGoogle Scholar
  4. 4.
    Brams, S.J.: Voting Procedures. In: Handbook of Game Theory, vol. 2, pp. 1055–1089. Elsevier, Amsterdam (1994)Google Scholar
  5. 5.
    Brams, S.J., Fishburn, P.C.: Voting Procedures. In: Handbook of Social Choice and Welfare, North-Holland, Amsterdam (1994)Google Scholar
  6. 6.
    Everaere, P., Konieczny, S., Marquis, P.: On merging strategyproofness. In: Proceedings of KR 2004, Morgan Kaufmann, San Francisco (2004)Google Scholar
  7. 7.
    Gibbard, A.: Manipulation of Voting Schemes: A General Result. Econometrica 41(4), 587–601 (1973)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Harrenstein, P., van der Hoek, W., Meyer, J.-J., Witteveen, C.: A modal characterization of nash equilibira. Fundamenta Informaticae 57(2-4), 281–321 (2002)Google Scholar
  9. 9.
    Konieczny, S., Pino-Pérez, R.: On the logic of merging. In: Cohn, A.G., Schubert, L., Shapiro, S.C. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Sixth International Conference (KR 1998), pp. 488–498. Morgan Kaufmann, San Francisco (1998)Google Scholar
  10. 10.
    Lomuscio, A., Sergot, M.: Deontic interpreted systems. Studia Logica 75 (2003)Google Scholar
  11. 11.
    Maynard-Zhang, P., Lehmann, D.: Representing and aggregating conflicting beliefs. Journal of Artificial Intelligence 19, 155–203 (2003)MATHMathSciNetGoogle Scholar
  12. 12.
    Maynard-Zhang, P., Shoham, Y.: Belief fusion: Aggregating pedigreed belief states. Journal of Logic, Language and Information 10(2), 183–209 (2001)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Meyer, T., Ghose, A., Chopra, S.: Social choice theory, merging and elections. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, p. 466. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Pacuit, E., Parikh, R.: A logic of communication graphs. In: Leite, J., Omicini, A., Torroni, P., Yolum, p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 256–269. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Parikh, R.: Social software. Synthese 132 (2002)Google Scholar
  16. 16.
    Parikh, R., Pacuit, E., Cogan, E.: The logic of knowledge based obligations. In: Leite, J., Omicini, A., Torroni, P., Yolum, p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 256–269. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Satterthwaite, M.: The Existence of a Strategy Proof Voting Procedure: a Topic in Social Choice Theory. PhD thesis, University of Wisconsin (1973)Google Scholar
  18. 18.
    van Benthem, J.: Rational dynamics and epistemic logic in games. Technical report, ILLC (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Samir Chopra
    • 1
  • Eric Pacuit
    • 2
  • Rohit Parikh
    • 3
  1. 1.Department of Computer ScienceBrooklyn College of CUNYBrooklyn
  2. 2.Department of Computer ScienceCUNY Graduate CenterNew YorkUSA
  3. 3.Departments of Computer Science, Mathematics and PhilosophyBrooklyn College and CUNY Graduate CenterNew YorkUSA

Personalised recommendations