Skip to main content

Searching Transcriptional Modules Using Evolutionary Algorithms

  • Conference paper
Parallel Problem Solving from Nature - PPSN VIII (PPSN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3242))

Included in the following conference series:

  • 3738 Accesses

Abstract

The mechanism of gene regulation has been studied intensely for decades. It is important to identify synergistic transcriptional motifs. Its search space is so large that an efficient computational method is required. In this paper, we present the method that can search automatically both transcriptional motif list and gene expression profiles for synergistic motif combinations. It uses evolutionary algorithms to find an optimal solution for the problems which have the huge search space. Our approach includes the additional evolutionary operator performing local search to improve searching ability. Our method was applied to four Saccharomyces cerevisiae gene expression datasets. The result shows that genes containing synergistic motif combination from our optimization technique are highly correlated than those from k-means clustering. In cell cycle as well as other expression datasets, our results generally coincide with the previous experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sinha, S., Tompa, M.: A statistical method for finding transcription factor binding sites. In: Proc. Int Conf. Intell. Syst. Mol. Biol., vol. 8, pp. 344–354 (2000)

    Google Scholar 

  2. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture. Nature Genetics 22, 281–285 (1999)

    Article  Google Scholar 

  3. Brazma, A., Jonassen, I., Vilo, J., Ukkonen, E.: Predicting gene regulatory elements in silico on a genomic scale. Genome Research 8(11), 1202–1215 (1998)

    Google Scholar 

  4. Pilpel, Y., Sudarsanam, P., Church, G.: Identifying regulatory networks by combinatorial analysis of promoter elements. Nat. Genet. 29, 153–159 (2001)

    Article  Google Scholar 

  5. Segal, E., Yelensky, R., Koller, D.: Genome-wide discovery of transcriptional modules from DNA sequence and gene expression. Bioinformatics 19, i273–i282 (2003)

    Article  Google Scholar 

  6. Kasturi, J., Acharya, R.: Clustering of diverse genomic data using information fusion. In: 2004 ACM symposium on Applied computing, pp. 116–120 (2004)

    Google Scholar 

  7. Sinkkonen, J., Nikkila, J., Lahti, L., Kaski, S.: Associative Clustering by Maximizing a Bayes Factor, Technical Report A68, Helsinki University of Technology (2003)

    Google Scholar 

  8. Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithm and Martial Arts: Towards Memetic Algorithms, Technical Report C3P Report 826, Caltech Concurrent Computation Program, California Institute of Technology (1998)

    Google Scholar 

  9. Mewes, H.W., et al.: MIPS: a database for genomes and protein sequences. Nucleic Acids Res 30(1), 31–34 (2002)

    Article  Google Scholar 

  10. Miller, B.L., Goldberg, D.E.: Genetic Algorithms, Selection Schemes and the Varying Effect of Noise, IlliGAL report, No. 95009 (1995)

    Google Scholar 

  11. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 9, 3273–3297 (1998)

    Google Scholar 

  12. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. 95, 14863–14868 (1998)

    Article  Google Scholar 

  13. Ge, H., Liu, Z., Church, G., Vidal, M.: Correlation between transcriptome and interactome mapping data from Saccharomyces cerivisia. Nature Genet. 29, 482–486 (2001)

    Article  Google Scholar 

  14. Jansen, R., Greenbaum, D., Gerstein, M.: Relating whole-genome expression data with protein-protein interactions. Genome Res. 12, 37–46 (2002)

    Article  Google Scholar 

  15. Simon, I., Barnett, J., Hannett, N., Harbison, C.T., Rinaldi, N.J., Volkert, T.L., Wyrick, J.J., Zeitlinger, J., Gifford, D.K., Jaakkola, R.S., Young, R.A.: Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106, 697–708 (2001)

    Article  Google Scholar 

  16. Jason, S.L., David, S., Roger, T., Cynthia, W., Glover, J.N.M.: Structure of the sporulation-specific transcription factor Ndt80 bound to DNA. EMBO 21(21), 5721–5732 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Joung, JG., Oh, S.J., Zhang, BT. (2004). Searching Transcriptional Modules Using Evolutionary Algorithms. In: Yao, X., et al. Parallel Problem Solving from Nature - PPSN VIII. PPSN 2004. Lecture Notes in Computer Science, vol 3242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30217-9_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30217-9_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23092-2

  • Online ISBN: 978-3-540-30217-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics