Skip to main content

Relative Loss Bounds and Polynomial-Time Predictions for the k-lms-net Algorithm

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3244))

Abstract

We consider a two-layer network algorithm. The first layer consists of an uncountable number of linear units. Each linear unit is an LMS algorithm whose inputs are first “kernelized.” Each unit is indexed by the value of a parameter corresponding to a parameterized reproducing kernel. The first-layer outputs are then connected to an exponential weights algorithm which combines them to produce the final output. We give loss bounds for this algorithm; and for specific applications to prediction relative to the best convex combination of kernels, and the best width of a Gaussian kernel. The algorithm’s predictions require the computation of an expectation which is a quotient of integrals as seen in a variety of Bayesian inference problems. Typically this computational problem is tackled by mcmc, importance sampling, and other sampling techniques for which there are few polynomial time guarantees of the quality of the approximation in general and none for our problem specifically. We develop a novel deterministic polynomial time approximation scheme for the computations of expectations considered in this paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.I.: An introduction to MCMC for machine learning. Machine Learning 50(1-2), 5–43 (2003)

    Article  MATH  Google Scholar 

  2. Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc. 68, 337–404 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer, Heidelberg (1998)

    Google Scholar 

  4. Cesa-Bianchi, N., Long, P., Warmuth, M.: Worst-case quadratic loss bounds for on-line prediction of linear functions by gradient descent. IEEE Transactions on Neural Networks 7(2), 604–619 (1996)

    Article  Google Scholar 

  5. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  6. Csató, L., Opper, M.: Sparse on-line gaussian processes. Neural Computation 14(3), 641–668 (2002)

    Article  MATH  Google Scholar 

  7. Freund, Y.: Predicting a binary sequence almost as well as the optimal biased coin. In: Proc. of COLT, pp. 89–98. ACM Press, New York (1996)

    Chapter  Google Scholar 

  8. Gibbs, M., MacKay, D.: Efficient implementation of gaussian processes (draft manuscript) (1996)

    Google Scholar 

  9. Herbster, M.: Learning additive models online with fast evaluating kernels. In: Helmbold, D.P., Williamson, B. (eds.) COLT 2001 and EuroCOLT 2001. LNCS (LNAI), vol. 2111, pp. 444–460. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58(301), 13–30 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kivinen, J., Smola, A.J., Williamson, R.C.: Online learning with kernels. In: NIPS, vol. 14, MIT Press, Cambridge (2002)

    Google Scholar 

  12. Kivinen, J., Warmuth, M.K.: Averaging expert predictions. In: Fischer, P., Simon, H.U. (eds.) EuroCOLT 1999. LNCS (LNAI), vol. 1572, pp. 153–167. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Littlestone, N.: Learning when irrelevant attributes abound: A new linearthreshold algorithm. Machine Learning 2, 285–318 (1988)

    Google Scholar 

  14. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Information and Computation 108(2), 212–261 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Micchelli, C., Pontil, M.: Learning the kernel function via regularization, Dept. of Computer Science, University College London, Research Note: RN/04/12 (2004)

    Google Scholar 

  16. Ong, C.S., Smola, A.J., Williamson, R.C.: Hyperkernels. In: Neural Information Processing Systems, vol. 15, MIT Press, Cambridge (2002)

    Google Scholar 

  17. Pan, V.Y.: Solving a polynomial equation: Some history and recent progress. SIAM Review 39(2), 187–220 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Traub, J.F., Werschulz, A.G.: Complexity and Information. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  19. Vermaak, J., Godsill, S.J., Doucet, A.: Sequential bayesian kernel regression. In: NIPS, vol. 16, MIT Press, Cambridge (2004)

    Google Scholar 

  20. Vovk, V.: Aggregating strategies. In: Proc. 3rd Annu. Workshop on Comput. Learning Theory, pp. 371–383. Morgan Kaufmann, San Francisco (1990)

    Google Scholar 

  21. Vovk, V.: Competitive on-line statistics. Bull. of the International Stat. Inst (1999)

    Google Scholar 

  22. Williams, C.K.I., Rasmussen, C.E.: Gaussian processes for regression. In: NIPS 1995, Cambridge, Massachusetts, MIT Press, Cambridge (1996)

    Google Scholar 

  23. Wu, Q., Ying, Y., Zhou, D.-X.: Multi-kernel regularized classifiers. Submitted to Journ. of Complexity (2004)

    Google Scholar 

  24. Yap, C.K.: Fundamental problems of algorithmic algebra. Oxford Uni. Press, Oxford (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herbster, M. (2004). Relative Loss Bounds and Polynomial-Time Predictions for the k-lms-net Algorithm. In: Ben-David, S., Case, J., Maruoka, A. (eds) Algorithmic Learning Theory. ALT 2004. Lecture Notes in Computer Science(), vol 3244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30215-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30215-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23356-5

  • Online ISBN: 978-3-540-30215-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics