Specification Retrieval – How to Find Attribute-Value Information on the Web

  • Minoru Yoshida
  • Hiroshi Nakagawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3248)


This paper proposes a method for retrieving Web pages according to objects described in them. To achieve that goal, ontologies extracted from HTML tables are used as queries. The system retrieves Web pages containing the type of objects described by a given ontology. We propose a simple and efficient algorithm for this task and show its performance on real-world Web sites.


Information Retrieval Vector Space Model Block Sequence Relevance Score Query Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lewis, D.D., Ringuette, M.: A comparison of two learning algorithms for text categorization. In: Proceedings of SDAIR 1994, 3rd Annual Symposium on Document Analysis and Information Retrieval, pp. 81–93 (1994)Google Scholar
  2. 2.
    Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann, San Francisco (1994)Google Scholar
  3. 3.
    Manning, C., Schütze, H.: Foundations of statistical natural language processing. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  4. 4.
    Nigam, K., Lafferty, J., McCallum, A.: Using maximum entropy for text categorization. In: Proceedings of IJCAI 1999 Workshop on Machine Learning for Information Filtering, pp. 61–67 (1999)Google Scholar
  5. 5.
    Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20, 273–297 (1995)zbMATHGoogle Scholar
  6. 6.
    Salton, G., Wang, A., Yang, C.: A vector space model for information retrieval. Journal of the American Society for Information Science 18, 613–620 (1975)zbMATHGoogle Scholar
  7. 7.
    Zaragoza, H., Hiemstra, D., Tipping, M.E.: Bayesian extension to the language model for ad hoc information retrieval. In: Proceedings of SIGIR 2003, pp. 4–9 (2003)Google Scholar
  8. 8.
    Sanderson, M.: Retrieving with good sense. Information Retrieval 2(1), 49–69 (2000)CrossRefGoogle Scholar
  9. 9.
    Miller, G.A.: Wordnet: A lexical database for english. Communications of the ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  10. 10.
    Masuda, K.: A ranking model of proximal and structural text retrieval based on region algebra. In: Proceedings of the ACL 2003 Student Research Workshop, pp. 50–57 (2003)Google Scholar
  11. 11.
    Yoshida, M., Torisawa, K., Tsujii, J.: Extracting ontologies from World Wide Web via HTML tables. In: Proceedings of PACLING 2001, pp. 332–341 (2001)Google Scholar
  12. 12.
    Salton, G., Allan, J., Buckley, C.: Approaches to passage retrieval in full text information systems. In: Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 49–58 (1993)Google Scholar
  13. 13.
    Rivest, R.: Learning decision trees. Machine Learning 2, 229–246 (1987)MathSciNetGoogle Scholar
  14. 14.
    Cormack, G.V., Palmer, C.R., Clarke, C.L.A.: Efficient construction of large test collections. In: Proceedings of the 21st International ACM SIGIR 1998, pp. 282–289 (1998)Google Scholar
  15. 15.
    Chakrabarti, S.: Mining the Web: Discovering Knowledge from Hypertext Data. Morgan-Kaufmann Publishers, San Francisco (2002)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Minoru Yoshida
    • 1
    • 2
  • Hiroshi Nakagawa
    • 1
    • 2
  1. 1.Information Technology Centerthe University of TokyoTokyo
  2. 2.CRESTJST 

Personalised recommendations