Skip to main content

The Potential of a Chemical Graph Transformation System

  • Conference paper
Graph Transformations (ICGT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3256))

Included in the following conference series:

Abstract

Chemical reactions can be represented as graph transformations. Fundamental concepts that relate organic chemistry to graph rewriting, and an introduction to the SMILES chemical graph specification language are presented. The utility of both deduction and unordered finite rewriting over chemical graphs and chemical graph transformations, is suggested. The authors hope that this paper will provide inspiration for researchers involved in graph transformation who might be interested in chemoinformatic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clayden, J., Greeves, N., Warren, S., Wothers, P.: Organic Chemistry. Oxford University Press, Oxford (2000)

    Google Scholar 

  2. Messmer, B.T., Bunke, H.: Subgraph isomorphism in polynomial time. Technical Report IAM 95-003, University of Bern, Institute of Computer Science and Applied Mathematics (1995)

    Google Scholar 

  3. Faulon, J.L.: Automorphism partitioning, and canonical labeling can be solved in polynomial- time for molecular graphs. Journal of Chemical Information and Computer Sciences 38, 432–444 (1998)

    Google Scholar 

  4. Klin, M., Rücker, C., Rücker, G., Tinhofer, G.: Algebraic combinatorics in mathematical chemistry. Methods and algorithms. I. Permutation groups and coherent (cellular) algebras. Technical Report TUM M9510, Techn. Univ. München (1995)

    Google Scholar 

  5. Brickner, S.J., et al.: Synthesis and antibacterial activity of U-100592 and U- 100766, two oxazolidinone antibacterial agents for the potential treatment of multidrug-resistant gram-positive bacterial infections. Journal of Medicinal Chemistry 39, 673–679 (1996)

    Article  Google Scholar 

  6. Garfield, E.: Are you ready for chemical linguistics? Chemical semantics? Chemical semiotics? Or, why WLN? Essays of an Information Scientist 1, 386–388 (1972), Paper available at: http://www.garfield.library.upenn.edu/essays/V1p386y1962-73.pdf

    Google Scholar 

  7. Garfield, E.: Chemico-linguistics: Computer translation of chemical nomenclature. Nature 192 (1961), Paper avilable at http://www.garfield.library.upenn.edu/essays/v6p489y1983.pdf

  8. Weininger, D.: SMILES, a chemical language and information-system. 1. Introduction to methodlogy and encoding rules. Journal of Chemical Information and Computer Sciences 28, 31–36 (1998)

    Google Scholar 

  9. Weininger, D., Weininger, A., Weininger, J.L.: SMILES 2: Algorithm for generation of unique SMILES notation. Journal of Chemical Information and Computer Sciences 29, 97–101 (1989)

    Google Scholar 

  10. Kelley, B.P.: Graph canonicalization. Dr. Dobb’s Journal 28, 66–69 (2003)

    Google Scholar 

  11. Daylight Chemical Information Systems Inc. (Daylight theory manual), Available at http://www.daylight.com/dayhtml/doc/theory/theory.toc.html

  12. Haaksna, A.A., Jansen, B.J.M., de Groot, A.: Lewis acid catalyzed Diels-Alder reactions of S-(+)-carvone with silyloxy dienes. Total synthesis of (+)-small alpha, greek-cyperone. Tetrahedron 48, 3121–3130 (1992)

    Article  Google Scholar 

  13. Smith, W.: Computational complexity of synthetic chemistry – basic facts (1997), Paper available at http://citeseer.ist.psu.edu/192652.html

  14. Corey, E.J., Cheng, X.M.: The Logic of Chemical Synthesis. John Wiley and Sons, Chichester (1995)

    Google Scholar 

  15. Johnson, A., Marshall, C.: Starting material oriented retrosynthetic analysis in the LHASA program. 2. Mapping the SM and target structures. Journal of Chemical Information and Computer Sciences 32, 418–425 (1992)

    Google Scholar 

  16. Rostovtsev, V.V., Green, L.G., Fokin, V.V., Sharpless, K.B.: A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angewandte Chemie International Edition 41, 2596–2599 (2002)

    Article  Google Scholar 

  17. Bohacek, R.S., McMartin, C., Guida, W.C.: The art and practice of structure-based drug design: A molecular modeling perspective. Medicinal Research Reviews 16, 3–50 (1998)

    Article  Google Scholar 

  18. Lee, D.H., Severin, K., Ghadiri, M.R.: Autocatalytic networks: The transition from molecular self-replication to molecular ecosystems. Current Opinion in Chemical Biology 1, 491–496 (1997)

    Article  Google Scholar 

  19. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  20. Jeong, H., Mason, S., Barabási, A.L., Oltvai, N.Z.: Lethality and centrality in protein networks. Nature 411, 41–42 (2001)

    Article  Google Scholar 

  21. Ray, L.B., Jansy, B.R.: Life and the art of networks. Science 301, 1863 (2003)

    Article  Google Scholar 

  22. Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. Journal of Chemical Information and Computer Sciences 43, 1085–1093 (2003)

    Google Scholar 

  23. Blostein, D., Fahmy, H., Grbavec, A.: Practical use of graph rewriting. Technical Report 95-373, Queens University (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yadav, M.K., Kelley, B.P., Silverman, S.M. (2004). The Potential of a Chemical Graph Transformation System. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds) Graph Transformations. ICGT 2004. Lecture Notes in Computer Science, vol 3256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30203-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30203-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23207-0

  • Online ISBN: 978-3-540-30203-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics