A Regular Language Membership Constraint for Finite Sequences of Variables

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3258)


This paper describes a global constraint on a fixed-length sequence of finite-domain variables requiring that the corresponding sequence of values taken by these variables belong to a given regular language, thereby generalizing some other known global constraints. We describe and analyze a filtering algorithm achieving generalized arc consistency for this constraint. Some comparative empirical results are also given.


Regular Expression Constraint Programming Constraint Satisfaction Problem Regular Language Global Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amilhastre, J., Fargier, H., Marquis, P.: Consistency Restoration and Explanations in Dynamic CSPs – Application to Configuration. Artificial Intelligence 135, 199–234 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Carlsson, M., Beldiceanu, N.: Revisiting the Lexicographic Ordering Constraint. Technical Report T2002:17, SICS, 13 p (2002)Google Scholar
  3. 3.
    Chang, C., Paige, R.: From Regular Expressions to DFA’s Using Compressed NFA’s. Theoretical Computer Science 178, 1–36 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    The Sequence Global Constraint of CHIP. Technical Report COSY/SEQ/032, COSYTEC, Orsay, France (1999)Google Scholar
  5. 5.
    Colmerauer, A.: An Introduction to PROLOG III. Communications of the ACM 33(7), 69–90 (1990)CrossRefGoogle Scholar
  6. 6.
    Golden, K., Pang, W.: Constraint Reasoning over Strings. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 377–391. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  8. 8.
    ILOG S.A., Gentilly, France. ILOG Solver Reference Manual, version 4.4 (1999)Google Scholar
  9. 9.
    Pesant, G.: A Filtering Algorithm for the Stretch Constraint. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 183–195. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Pesant, G.: A Regular Language Membership Constraint for Sequences of Variables. In: Proc. Second International Workshop on Modelling and Reformulating Constraint Satisfaction Problems, Principles and Practice of Constraint Programming (CP 2003), Kinsale, Ireland, pp. 110–119 (2003)Google Scholar
  11. 11.
    Rajasekar, A.: Applications in Constraint Logic Programming with Strings. In: Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 109–122. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Trick, M.A.: A Dynamic Programming Approach for Consistency and Propagation for Knapsack Constraints. Annals of Operations Research 118, 73–84 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Vempaty, N.R.: Solving Constraint Satisfaction Problems Using Finite State Automata. In: Proc. National Conference on Artificial Intelligence (AAAI 1992), pp. 453–458. AAAI Press, Menlo Park (1992)Google Scholar
  14. 14.
    Walinsky, C.: CLP(Σ_): Constraint Logic Programming with Regular Sets. In: Proceedings of the Sixth International Conference on Logic Programming, Lisbon, Portugal, pp. 181–196. MIT Press, Cambridge (1989)Google Scholar
  15. 15.
    Watson, B.W.: A taxonomy of finite automata minimization algorithms. Technical Report Computing Science Note 93/44, Eindhoven University of Technology, The Netherlands (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.École Polytechnique de MontréalMontrealCanada
  2. 2.Centre for Research on Transportation (CRT)Université de MontréalMontrealCanada

Personalised recommendations