Advertisement

An Efficient Identity-Based Group Signature Scheme over Elliptic Curves

  • Song Han
  • Jie Wang
  • Wanquan Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3262)

Abstract

Group signatures allow every authorized member of a group to sign on behalf of the underlying group. Anyone except the group manager is not able to validate who generates a signature for a document. A new identity-based group signature scheme is proposed in this paper. This scheme makes use of a bilinear function derived from Weil pairings over elliptic curves. Also, in the underlying composition of group signatures there is no exponentiation computation modulo a large composite number. Due to these ingredients of the novel group signatures, the proposed scheme is efficient with respect to the computation cost in signing process. In addition, this paper comes up with a security proof against adaptive forgeability.

Keywords

Group Signatures Anonymity Network Security Weil Pairings Security Protocol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A pratical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Ateniese, G., de Medeiros, B.: Anonymous E-prescriptions. In: ACM Workshop on Privacy in the Electronic Society (WPES 2002), Sponsored by ACM SIGSAC, Washington DC, USA (2002)Google Scholar
  3. 3.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairingbased cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Chaum, D., Heyst, E.V.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
  6. 6.
    Chen, L., Harrison, K., Smart, N., Soldera, D.: Applications of multiple trust authorities in pairing based cryptosystems. In: Davida, G.I., Frankel, Y., Rees, O. (eds.) InfraSec 2002. LNCS, vol. 2437, pp. 260–275. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Camenisch, J., Michels, M.: A group signature scheme with improved efficiency. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 160–174. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Chen, L., Pedersen, T.P.: New group signature schemes. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 171–181. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  9. 9.
    Camenish, J., Stadler, M.: Efficient group signature schemes for large groups. In: Sommer, G., Daniilidis, K., Pauli, J. (eds.) CAIP 1997. LNCS, vol. 1296, pp. 410–424. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Lauter, K.: The Advantages of Elliptic Curve Cryptography for wireless security. IEEE Wireless Communications Magazine, IEEE Press (February 2004)Google Scholar
  12. 12.
    Petersen, H.: How to convert any digital signature scheme into a group signature scheme.In:Security Protocols Workshop 1997, pp.177-190 (1997)Google Scholar
  13. 13.
    Park, S., Kim, S., Won, D.: Id-based group signature. Electronics Letters 33(19), 1616–1617 (1997)CrossRefGoogle Scholar
  14. 14.
    Popescu, C.: An efficient id-based group signature scheme, Studia Universitatis Babes-Bolyai. Informatica XLVII ,November 2(2002)Google Scholar
  15. 15.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology, Springer-Verlag 13(3), 361–396 (2000)zbMATHCrossRefGoogle Scholar
  16. 16.
    Shamir, A.: Identity-based cryptosystems and signatures. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  17. 17.
    Schnorr, C.: Efficient signature generation by smart cards. Journal of Cryptology, Springer-Verlag 4(3), 239–252 (1991)MathSciNetGoogle Scholar
  18. 18.
    Song, D.: Prcatical forward-secure group signature schemes. In: Proceedings of ACM Symposium on Computer and Communication Security, pp. 225–234. ACM Press, New York (2001)Google Scholar
  19. 19.
    Smart, N.P., Westwood, E.J.: Point multiplication on ordinary elliptic curves over fields of characteristic three. Applicable Algebra in Engineering, Communication and Computing 13, 485–497 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Tseng, Y.M., Jan, J.K.: A novel id-based group signature scheme. In: Proceedings of Workshop on Cryptology and Information Security 1998, Tainan, pp. 159–164 (1998)Google Scholar
  21. 21.
    Wu, C.K., Varadharajan, V.: Many-to-one cryptographic algorithms and group signatures, Australian Computer Science Communications. In: Kanchanasut, K., Levy, J.-J. (eds.) ACSC 1995. LNCS, vol. 1023, pp. 432–444. Springer, Heidelberg (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Song Han
    • 1
    • 2
  • Jie Wang
    • 2
  • Wanquan Liu
    • 1
  1. 1.Department of ComputingCurtin University of TechnologyPerthAustralia
  2. 2.Department of MathematicsBeijing UniversityBeijingChina

Personalised recommendations