Abstract
German has a richer system of inflectional morphology than English, which causes problems for current approaches to statistical word alignment. Using Giza++ as a reference implementation of the IBM Model 1, an HMMbased alignment and IBM Model 4, we measure the impact of normalizing inflectional morphology on German-English statistical word alignment. We demonstrate that normalizing inflectional morphology improves the perplexity of models and reduces alignment errors.
Keywords
- Noun Phrase
- Machine Translation
- Target Language
- Source Language
- Morphological Processing
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Hiyan, A., Douglas, S., Bangalore, S.: Learning de pendency translation models as collections of finite-state head transducers. Computational Linguistics 26(1), 45–60 (2000)
Brill, E.: Transformation-based error-driven learning and natural language processing: A case-study in part of speech tagging. Computational Linguistics 21(4), 543–565 (1995)
Brown, Peter, F., Pietra, S.A.D., Pietra, V.J.D., Mercer, R.L.: The mathematics of statistical machine translation: Parameter estimation. Computational Linguistics 19(2), 263–311
Dejean, A., Herve, A., Gaussier, E., Goutte, C., Yamada, K.: Reducing Parameter Space for Word Alignment. In: Proceedings from the HLT-NAACL, workshop on Building Parallel Texts,pp. 23-26 (2003)
Gamon, M., Ringger, E., Zhang, Z., Moore, R., Corston-Oliver, S.: Extraposition: A case study in German sentence realization. In: Proceedings of COLING 2002, pp. 301–307 (2002)
Goodman, J.: A Bit of Progress in Language Modeling, Extended Version. Microsoft Research Technical Report MSR-TR-2001-72 (2001)
George, H.: Intelligent Writing Assistance. In: R. Dale, H. Moisl and H. Somers (eds.), Handbook of Natural Language Processing. Marcel Dekker ,New York (2000)
Daniel, M., Wong, W.: A Phrase-Based, Joint Probability Model for Statistical Machine Translation.In: EMNLP (2002)
Sonja, N., Ney, H.: Improving SMT quality with morpho-syntactic analysis. COLING 2000: The 18th International Conference on Computational Linguistics,pp. 1081-1085 (2000)
Sonja, N., Ney, H.: Statistical Machine Translation with Scarce Resources Using Morpho-syntactic Information. Computational Linguistics 30(2), 181–204 (2004)
Och, F., Ney, H.: Improved statistical alignment models. In: Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics ,pp.440-447 (2000)
Och, F., Ney, H.: A systematic comparison of various statistical alignment models. Computational Linguistics 29(1), 19–52 (2003)
Stephan, V., Ney, H., Tillman HMM-based, C.: word alignment in statistical translation.In: Proceedings of COLING 1996: The 16th International Conference on Computational Linguistics,pp. 836-841
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Corston-Oliver, S., Gamon, M. (2004). Normalizing German and English Inflectional Morphology to Improve Statistical Word Alignment. In: Frederking, R.E., Taylor, K.B. (eds) Machine Translation: From Real Users to Research. AMTA 2004. Lecture Notes in Computer Science(), vol 3265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30194-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-30194-3_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23300-8
Online ISBN: 978-3-540-30194-3
eBook Packages: Springer Book Archive