Skip to main content

The Notion of Veto Number and the Respective Power of \(\Diamond {\cal P}\) and \(\Diamond {\cal S}\) to Solve One-Shot Agreement Problems

  • Conference paper
Distributed Computing (DISC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3274))

Included in the following conference series:

Abstract

Unreliable failure detectors are abstract devices that, when added to asynchronous distributed systems, allow to solve distributed computing problems (e.g., Consensus) that otherwise would be impossible to solve in these systems. This paper focuses on two classes of failure detectors defined by Chandra and Toueg, namely, the classes denoted \(\Diamond {\cal P}\) (eventually perfect) and \(\Diamond {\cal S}\) (eventually strong). Both classes include failure detectors that eventually detect permanently all process crashes, but while the failure detectors of \(\Diamond {\cal P}\) eventually make no erroneous suspicions, the failure detectors of \(\Diamond {\cal S}\) are only required to eventually not suspect a single correct process.

In such a context, this paper addresses the following question related to the comparative power of these classes, namely: “Are there one-shot agreement problems that can be solved in asynchronous distributed systems with reliable links but prone to process crash failures augmented with \(\Diamond {\cal P}\), but cannot be solved when those systems are augmented with \(\Diamond {\cal S}\)?” Surprisingly, the paper shows that the answer to this question is “no”. An important consequence of this result is that \(\Diamond {\cal P}\) cannot be the weakest class of failure detectors that enables solving one-shot agreement problems in unreliable asynchronous distributed systems. These results are then extended to the case of more severe failure modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilera, M.K., Chen, W., Toueg, S.: On Quiescent Reliable Communication. SIAM Journal of Computing 29(6), 2040–2073 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On Implementing Ω with Weak Reliability and Synchrony Assumptions. In: Proc. 22h ACM Symposium on Principles of Distributed Computing (PODC 2003), July 2003, ACM Press, Boston (2003)

    Google Scholar 

  3. Anceaume, E., Fernandez, A., Mostefaoui, A., Neiger, G., Raynal, M.: A Necessary and Sufficient Condition for Transforming Limited Accuracy Failure Detectors. Journal of Computer and Systems Science 68, 123–133 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chandra, T.D., Hadzilacos, V., Toueg, S.: The Weakest Failure Detector for Solving Consensus. Journal of the ACM 43(4), 685–722 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chandra, T.D., Toueg, S.: Unreliable Failure Detectors for Reliable Distributed Systems. Journal of the ACM 43(2), 225–267 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Charron-Bost, B., Le Fessant, F.: Validity conditions in agreement problems, and time complexity. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 187–207. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Chen, W., Toueg, S., Aguilera, M.K.: On the Quality of Service of Failure Detectors. IEEE Transactions on Computers 51(5), 561–580 (2002)

    Article  MathSciNet  Google Scholar 

  8. Chockler, G., Keidar, I., Vitenberg, R.: Group Communication Specifications: a Comprehensive Study. ACM Computing Surveys 33(4), 427–469 (2001)

    Article  Google Scholar 

  9. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: A Realistic Look at Failure Detectors. In: Proc. IEEE Inter. Conference on Dependable Systems and Networks (DSN 2002), Washington D.C., pp. 345–352. IEEE Computer Society Press, Los Alamitos (2002)

    Chapter  Google Scholar 

  10. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Failure Detection Lower Bounds on Registers and Consensus. In: Proc. Symposium on Distributed Computing (DISC 2002). LNCS, vol. 2508, pp. 237–251. Springer, Heidelberg (2002)

    Google Scholar 

  11. Dolev, D., Dwork, C., Stockmeyer, L.: On the Minimal Synchronism Needed for Distributed Consensus. Journal of the ACM 34(1), 77–97 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dolev, S., Rajsbaum, S.: Stability of Long-Lived Consensus. In: Proc. 19th ACM Symposium on Principles of Distributed Computing (PODC 2003), Portland (OR), July 2000, pp. 309–318. ACM Press, New York (2000)

    Chapter  Google Scholar 

  13. Doudou, A., Schiper, A.: Muteness Detectors for Consensus with Byzantine Processes. Brief Annoucement. In: Proc. 17th ACM Symposium on Principles of Distributed Computing (PODC 1998), Puerto Vallarta (Mexico), p. 315. ACM Press, New York (1998)

    Chapter  Google Scholar 

  14. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the Presence of Partial Synchrony. Journal of the ACM 35(2), 288–323 (1988)

    Article  MathSciNet  Google Scholar 

  15. Fetzer, C., Raynal, M., Tronel, F.: An Adaptive Failure Detection Protocol. In: Proc. 8th IEEE Pacific Rim Int. Symposium on Dependable Computing (PRDC 2001), pp. 146–153 (2001)

    Google Scholar 

  16. Fischer, M.J., Lynch, N., Paterson, M.S.: Impossibility of Distributed Consensus with One Faulty Process. Journal of the ACM 32(2), 374–382 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Friedman, R., Mostefaoui, A., Raynal, M.: On the Respective Power of \(\diamondsuit\)P and \(\diamondsuit\)S to Solve One-Shot Agreement Problems. Tech Report #1547, 20 pages, IRISA, Université de Rennes 1, France (2003), http://www.irisa.fr/bibli/publi/pi/2003/1547/1547.html

  18. Friedman, R., Mostefaoui, A., Raynal, M.: The Notion of Veto Number for Distributed Agreement Problems. In: Sen, A., Das, N., Das, S.K., Sinha, B.P. (eds.) IWDC 2004. LNCS, vol. 3326, pp. 315–325. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Guerraoui, R.: Non-Blocking Atomic Commit in Asynchronous Distributed Systems with Failure Detectors. Distributed Computing 15, 17–25 (2002)

    Article  Google Scholar 

  20. Guerraoui, R., Kouznetsov, P.: On the Weakest Failure Detector for Non-Blocking Atomic Commit. In: Proc. 2nd Int. IFIP Conference on Theoretical Computer Science (TCS 2002), Montréal (Canada), August 2002, pp. 461–473 (2002)

    Google Scholar 

  21. Hélary, J.-M., Hurfin, M., Mostefaoui, A., Raynal, M., Tronel, F.: Computing Global Functions in Asynchronous Distributed Systems with Process Crashes. IEEE Transactions on Parallel and Distributed Systems 11(9), 897–909 (2000)

    Article  Google Scholar 

  22. Larrea, M., Arèvalo, S., Fernández, A.: Efficient Algorithms to Implement Unreliable Failure Detectors in Partially Synchronous Systems. In: Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693, pp. 34–48. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  23. Larrea, M., Fernández, A., Arèvalo, S.: Optimal Implementation of the Weakest Failure Detector for Solving Consensus. In: Proc. 19th Symposium on Reliable Distributed Systems (SRDS 2000), pp. 52–60 (2000)

    Google Scholar 

  24. Moran, S., Wolfstahl, Y.: Extended Impossibility Results for Asynchronous Complete Networks. Information Processing Letters 26, 145–151 (1987)

    Article  MathSciNet  Google Scholar 

  25. Mostefaoui, A., Mourgaya, E., Raynal, M.: Asynchronous Implementation of Failure Detectors. In: Proc. Int. IEEE Conference on Dependable Systems and Networks (DSN 2003), June 2003, pp. 351–360 (2003)

    Google Scholar 

  26. Mostefaoui, A., Rajsbaum, S., Raynal, M.: Conditions on Input Vectors for Consensus Solvability in Asynchronous Distributed Systems. Journal of the ACM 50(6), 922–954 (2003)

    Article  MathSciNet  Google Scholar 

  27. Pease, L., Shostak, R., Lamport, L.: Reaching Agreement in Presence of Faults. Journal of the ACM 27(2), 228–234 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  28. Raynal, M., Tronel, F.: Restricted Failure Detectors: Definition and Reduction Protocols. Information Processing Letters 72, 91–97 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Friedman, R., Mostefaoui, A., Raynal, M. (2004). The Notion of Veto Number and the Respective Power of \(\Diamond {\cal P}\) and \(\Diamond {\cal S}\) to Solve One-Shot Agreement Problems. In: Guerraoui, R. (eds) Distributed Computing. DISC 2004. Lecture Notes in Computer Science, vol 3274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30186-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30186-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23306-0

  • Online ISBN: 978-3-540-30186-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics