Skip to main content

Effective Evolutionary Multimodal Optimization by Multiobjective Reformulation Without Explicit Niching/Sharing

  • Conference paper
  • 1463 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3285))

Abstract

In this paper, we revisit a general class of multimodal function optimizations using Evolutionary Algorithms (EAs) and, in particular, study a reformulation of multimodal optimization into a multiobjective framework. For both multimodal and multiobjective problems, most implementations need niching/sharing to promote diversity in order to obtain multiple (near-) optimal solutions. Such techniques work best when one has a priori knowledge of the problem – for most real problems, however, this is not the case. In this paper, we solve multimodal optimizations reformulated into multiobjective problems using a steady-state multiobjective genetic algorithm which preserves diversity without niching. We find diverse solutions in objective space for two multimodal functions and compare these with previously published work. The algorithm without any explicit diversity-preserving operator is found to produce diverse sampling of the Pareto-front with significantly lower computational effort.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldberg, D.E., Richardson, J.: Genetic Algorithms with Sharing for Multimodal Function Optimization. In: Proc. 2nd Int. Conf. Genetic Algorithms, pp. 41–49 (1987)

    Google Scholar 

  2. Deb, K., Goldberg, D.E.: An Investigation of Niche and Species Formation in Genetic Function Optimization. In: Proc. 3rd Int. Conf. Genetic Algorithms, pp. 42–50 (1989)

    Google Scholar 

  3. Mahfoud, S.W.: Crowding and Preselection Revisited. In: Proc. Parallel Problem Solving from Nature, PPSN-2 (1992)

    Google Scholar 

  4. Beasley, D., Bull, D.R., Martin, R.R.: A Sequential Niche Technique for Multimodal Function Optimization. Evolutionary Computation 1, 101–125 (1993)

    Article  Google Scholar 

  5. Yin, X., Germay, N.: A Fast Genetic Algorithm with Sharing Scheme using Cluster Analysis Methods in Multimodal Function Optimization. In: Proc. Int. Conf. Artificial Neural Nets and Genetic Algorithms (1993)

    Google Scholar 

  6. Goldberg, D.E., Wang, L.: Adaptive Niching via Coevolutionary Sharing. Genetic Algorithms and Evolutionary Strategies in Engineering and Computer Science (1998)

    Google Scholar 

  7. Mahfoud, S.W.: Niching Methods for Genetic Algorithms. IlliGAL Tech. Report 95001, Illinois Genetic Algorithm Laboratory, Univ. Illinois, Urbana (1995)

    Google Scholar 

  8. Watson, J. P.: A Performance Assessment of Modern Niching Methods for Parameter Optimization Problems. In: Gecco 1999 (1999)

    Google Scholar 

  9. Hocaoglu, C., Sanderson, A.C.: Multimodal Function Optimization Using Minimal Representation Size Clustering and Its Application to Planning Multipaths. Evolutionary Computation 5, 81–104 (1997)

    Article  Google Scholar 

  10. Deb, K.: Multiobjective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    Google Scholar 

  11. Coello, C.A.C., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems, May 2002. Kluwer, Boston (2002)

    MATH  Google Scholar 

  12. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms-Part I: a unified formulation. IEEE Trans. Systems, Man and Cybernetics-Part A: Systems and Humans 28(1), 26–37 (1998)

    Article  Google Scholar 

  13. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2 – Improving the Strength Pareto Evolutionary Algorithm. EUROGEN (2001)

    Google Scholar 

  14. Laumanns, M., Thiele, L., Deo, K., Zitzler, E.: Combining Convergence and Diversity in Evolutionary Multiobjective Optimization. Evolutionary Computation 10, 182–263 (2002)

    Article  Google Scholar 

  15. Kumar, R., Rockett, P.I.: Assessing the Convergence of Rank-Based Multiobjective Genetic Algorithms. In: Proc. IEE/ IEEE 2nd Int. Conf. Genetic Algorithms in Engineering Systems: Innovations & Applications, pp. 19–23 (1997)

    Google Scholar 

  16. Kumar, R., Rockett, P.I.: Improved Sampling of the Pareto-Front in Multiobjective Genetic Optimizations by Steady-State Evolution: A Pareto Converging Genetic Algorithm. Evolutionary Computation 10(3), 282–314 (2002)

    Article  Google Scholar 

  17. Deb, K.: Multiobjective Genetic Algorithms: Problem Difficulties and Construction of Test Problems. Evolutionary Computation 7, 1–26 (1999)

    Article  Google Scholar 

  18. Purshouse, R.C., Fleming, P.J.: Elitism, Sharing and Ranking Choices in Evolutionary Multi-criterion Optimization. Research Report No. 815, Dept. Automatic Control & Systems Engineering, University of Sheffield (January 2002)

    Google Scholar 

  19. Whitley, L.D.: The GENITOR Algorithm and Selection Pressure: Why Rank Based Allocation of Reproductive Trials is Best. In: Proc. 3rd Int. Conf. Genetic Algorithm, pp. 116–121 (1989)

    Google Scholar 

  20. Davidor, Y.: A Naturally Occurring Niche and Species Phenomenon: the Model and First Results. In: Proc. 4th Int. Conf. Genetic Algorithm, pp. 257–262 (1991)

    Google Scholar 

  21. Eshelman, L.J.: The CHC Adaptive Search Algorithm: How to have Safe Search when Engaging in Nontraditional Genetic Recombination. In: FOGA, pp. 265–283 (1991)

    Google Scholar 

  22. De Jong, K., Sarma, J.: Generation Gap Revisited. Foundations of Genetic Algorithms II, 19–28 (1993)

    Google Scholar 

  23. Mengshoel, O.J., Goldberg, D.E.: Probability Crowding: Deterministic Crowding with Probabilistic Replacement. In: Proc. GECCO, pp. 409–416 (1999)

    Google Scholar 

  24. Li, J.-P., Balazs, M.E., Parks, G.T., Clarkson, P.J.: A Species Conserving Genetic Algorithm for Multimodal Function Optimization. Evolutionary Computation 10(3), 207–234 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kumar, R., Rockett, P. (2004). Effective Evolutionary Multimodal Optimization by Multiobjective Reformulation Without Explicit Niching/Sharing. In: Manandhar, S., Austin, J., Desai, U., Oyanagi, Y., Talukder, A.K. (eds) Applied Computing. AACC 2004. Lecture Notes in Computer Science, vol 3285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30176-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30176-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23659-7

  • Online ISBN: 978-3-540-30176-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics