Fisher Equilibrium Price with a Class of Concave Utility Functions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3221)


In this paper we study efficient algorithms for computing equilibrium price in the Fisher model for a class of nonlinear concave utility functions, the logarithmic utility functions. We derive a duality relation between buyers and sellers under such utility functions, and use it to design a polynomial time algorithm for calculating equilibrium price, for the special case when either the number of sellers or the number of buyers is bounded by a constant.


Utility Function Polynomial Time Algorithm Price Vector Polynomial Time Approximation Scheme Fisher Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arrow, K.K., Debreu, G.: Existence of An Equilibrium for a Competitive Economy. Econometrica 22, 265–290 (1954)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Codenotti, B., Varadarajan, K.: Efficient Computation of Equilibrium Prices for Market with Leontief Utilities. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 371–382. Springer, Heidelberg (2004) (to appear)CrossRefGoogle Scholar
  3. 3.
    Deng, X., Papadimitriou, C.H., Safra, S.: On the Complexity of Equilibria, STOC 2002, 67-71. Journal version: Xiaotie Deng, C. H. Papadimitriou, S. Safra. On the Complexity of Price Equilibrium, Journal of Computer and System Sciences 67(2), 311–324 (2003)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Devanur, N., Papadimitriou, C.H., Saberi, A., Vazirani, V.V.: Market Equilibrium via a Primal-Dual-Type Algorithm. In: FOCS 2002, pp. 389–395 (2002)Google Scholar
  5. 5.
    Devanur, N., Vazirani, V.: An Improved Approximation Scheme for Computing Arrow-Debreu Prices for the Linear Case. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 149–155. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Devanur, N., Vazirani, V.: The Spending Constraint Model for Market Equilibrium: Algorithmic, Existence and Uniqueness Results. In: STOC 2004 (2004)Google Scholar
  7. 7.
    Gale, D.: The Theory of Linear Economic Models. McGraw Hill, N.Y. (1960)Google Scholar
  8. 8.
    Jain, K., Mahdian, M., Saberi, A.: Approximating Market Equilibria. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 98–108. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Kapoor, S., Garg, R.: Auction Algorithms for Market Equilibrium. In: STOC 2004 (2004)Google Scholar
  10. 10.
    Polyak, B.T.: Introduction to Optimization. Opt. Software Inc. (1987)Google Scholar
  11. 11.
    Scarf, H.E.: The Computation of Economic Equilibria (with collaboration of T. Hansen), Cowles Foundation Monograph No. 24, Yale University Press (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Department of Computer ScienceFudan UniversityChina
  2. 2.Department of Computer ScienceCity University of Hong Kong 
  3. 3.Department of Computer Science and TechnologyTsinghua UniversityChina
  4. 4.Department of Computer SciencePrinceton University 

Personalised recommendations